Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 202(2): 765-777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37191761

RESUMEN

Cobalt ferrite nanoparticles (CFN) are employed in data storage, imaging, medication administration, and catalysis due to their superparamagnetic characteristics. The widespread use of CFN led to significantly increased exposure to people and the environment to these nanoparticles. Until now, there is not any published paper describing the adverse effect of repeated oral intake of this nanoformulation on rats' lungs. So, the current research aims to elucidate the pulmonary toxicity prompted by different concentrations of CFN in rats as well as to explore the mechanistic way of such toxicity. We used 28 rats that were divided equally into 4 groups. The control group received normal saline, and the experimental groups received CFN at dosage levels 0.05, 0.5, and 5 mg/kg bwt. Our findings revealed that CFN enhanced dose-dependent oxidative stress manifested by raising in the MDA levels and declining in the GSH content. The histopathological examination revealed interstitial pulmonary inflammation along with bronchial and alveolar damage in both 0.5 and 5 mg CFN given groups. All these lesions were confirmed by the immunohistochemical staining that demonstrated strong iNOS and Cox-2 protein expression. There was also a significant upregulation of TNFα, Cox-2, and IL-1ß genes with downregulation of IL-10 and TGF-ß genes. Additionally, the group receiving 0.05 mg CFN did not exhibit any considerable toxicity in all measurable parameters. We concluded that the daily oral intake of either 0.5 or 5 mg CFN, but not 0.05 mg, could induce pulmonary toxicity via NPs and/or its leached components (cobalt and iron)-mediated oxido-inflammatory stress. Our findings may help to clarify the mechanisms of pulmonary toxicity generated by these nanoparticles through outlining the standards for risk assessment in rats as a human model.


Asunto(s)
Enfermedades Pulmonares , Nanopartículas , Neumonía , Humanos , Ratas , Animales , Ciclooxigenasa 2 , Neumonía/inducido químicamente , Nanopartículas/toxicidad , Cobalto/química , Estrés Oxidativo
2.
Environ Toxicol Pharmacol ; 96: 103982, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179809

RESUMEN

The mycotoxin ochratoxin A (OTA) is produced by the fungi Aspergillus and Penicillium. The flavonoid quercetin (QUE) is distinguished by its antioxidant, anti-inflammatory, and antiapoptotic properties. This study was designed to determine whether QUE can protect broiler chickens against OTA-induced nephrotoxicity. Forty broiler chicks were randomly divided into four equal groups: control, OTA, QUE, and OTA + QUE. For 6 weeks, OTA (0.5 mg/kg) and/or QUE (0.5 g/kg) were added to the diet of chickens. The results demonstrated that OTA exposure increased serum levels of creatinine, uric acid, and blood urea nitrogen. OTA exposure also increased renal malondialdehyde content but decreased renal antioxidants. OTA-exposed chickens exhibited multiple pathological kidney lesions. Moreover, OTA exposure induced apoptosis in renal tissue, which was manifested by the up-regulation of proapoptotic genes and down-regulation of antiapoptotic genes via the suppression of the PI3K/AKT pathway. In addition, coadministration of QUE and OTA mitigated most of these nephrotoxic effects.


Asunto(s)
Antioxidantes , Ocratoxinas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Pollos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estrés Oxidativo , Ocratoxinas/toxicidad , Apoptosis
3.
J Vet Res ; 66(2): 167-177, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35892096

RESUMEN

Introduction: Ochratoxin A (OTA) is a mycotoxin notably produced by Aspergillus and Penicillium spp. Bacillus subtilis fermentation extract (BSFE) contains specific enzymes which hydrolyse OTA. This study evaluated the efficiency of BSFE in ameliorating the immunotoxic and nephrotoxic effects of OTA in broiler chickens. Material and Methods: Day-old broiler chicks were divided equally into four groups of ten: control, OTA (0.5 mg/kg feed), BSFE product (1 mL/L water) and OTA + BSFE at the same concentrations. The chicks were vaccinated against avian influenza, Newcastle disease, and infectious bronchitis, and lymphoproliferation was induced in all birds by phytohaemagglutinin-P (PHA-P). Serum samples were taken before sacrifice and organ tissue samples were taken after, in which renal function biomarkers were assayed and the presence of OTA residue was evaluated by high-performance thin-layer chromatography. Protein markers of apoptosis were determined by qPCR, and tissue lesions were examined histopathologically. Results: Exposure to OTA significantly decreased the antibody response to the vaccines and the lymphoproliferative response to PHA-P, and significantly elevated the renal function indicators: serum urea, uric acid and creatinine. It also induced oxidative stress (reduced catalase activity and glutathione concentration), lipid peroxidation (increased malondialdehyde content), apoptosis (increased Bax and Caspase-3 and decreased Bcl-2 gene levels) and pathological lesions in kidney, bursa of Fabricius, spleen and thymus tissue. Residues of OTA were detected in the serum and tissue. BSFE mitigated most of these toxic effects. Conclusion: BSFE counters OTA-induced immunotoxicity and nephrotoxicity because of its content of carboxypeptidase and protease enzymes.

4.
Toxicology ; 473: 153208, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35569531

RESUMEN

With recent progress in the manufacture and applications of nickel oxide nanoparticles (NiO NPs), concerns about their adverse effects are increasing. Hesperidin (HSP) is a citrus flavonoid that has a potent anti-inflammatory, antioxidant and free radical scavenging activities. This study aims to investigate the protective effect of HSP against testicular and spermatological damages induced by NiO NPs in male rats. Forty rats were randomly and equally divided into four groups: control, NiO NPs, HSP and NiO NPs + HSP. NiO NPs (100 mg/kg) and/or HSP (100 mg/kg) were given daily by gavage for 60 days. Exposure to NiO NPs induced marked reproductive toxicity in male rats that was manifested by increased sperm abnormalities and deterioration of sperm motility, count and viability. NiO NPs also increased lipid peroxidation and negatively affected the cellular antioxidant defense system in the testis of rats. The level of serum testosterone hormone was increased in NiO NPs-exposed rats. qPCR showed a marked downregulation in expression of steroidogenesis-related genes (CYP11A1, HSD3B and STAR) and a significant upregulation in expression of apoptosis-related gene (caspase-9) in testicular tissue of rats. Various pathological lesions and an increase in the number of PCNA-positive immune-reactive cells were also noticed in the testis of NiO NPs-exposed rats. Co-administration of HSP significantly ameliorated most of the NiO NPs-induced testicular damages and improved male fertility in rats.


Asunto(s)
Hesperidina , Nanopartículas , Animales , Antioxidantes/farmacología , Hesperidina/farmacología , Masculino , Nanopartículas/toxicidad , Níquel , Estrés Oxidativo , Ratas , Motilidad Espermática , Esteroides
5.
Chem Biol Interact ; 351: 109720, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34717913

RESUMEN

Ochratoxin A (OTA) is a fungal secondary metabolite produced by certain species of Aspergillus and Penicillium, and exerts immunosuppressive effect on humans and animals. Quercetin (QUE) is one of the flavonoids produced as a plant-secondary metabolite. The present study was designed to evaluate the efficacy of QUE against the immunotoxic hazard of OTA in broiler chickens. Forty one-day-old broiler chicks were randomly and equally allocated into four groups; control, OTA (0.5 mg/kg feed), QUE (0.5 g/kg feed) and OTA + QUE (0.5 mg/kg OTA + 0.5 g/kg QUE). The results revealed that dietary OTA induced a significant decrease in the antibody response to Newcastle Disease (ND), Infectious Bronchitis (IB) and Avian Influenza (AI) vaccination and in the lymphoproliferative response to Phytohemagglutinin-P (PHA-P). Ochratoxin A also induced oxidative stress and lipid peroxidation in the bursa of Fabricius, spleen and thymus tissues of chickens as demonstrated by decreased CAT and GSH levels and increased TBARS content. In addition, administration of OTA resulted in apoptosis, which was evident by the increased expression level of PTEN, Bax and Caspase-3 genes and decreased expression level of PI3K, AKT and Bcl-2 genes. Furthermore, exposure to OTA resulted in various pathological lesions in the bursa of Fabricius, spleen and thymus of chickens. On the other hand, administration of QUE ameliorated most of the immunotoxic effects of OTAby its immunomodulatory, antioxidant and anti-apoptotic activities. Taken together, the results suggested that QUE potentially alleviated the OTA-induced immunotoxicity in broiler chickens, probably through amelioration of oxidative stress and activation of the PI3K/AKT signaling pathway.


Asunto(s)
Antioxidantes/uso terapéutico , Factores Inmunológicos/uso terapéutico , Ocratoxinas/toxicidad , Quercetina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Formación de Anticuerpos/efectos de los fármacos , Proteínas Aviares/metabolismo , Bolsa Sinovial/efectos de los fármacos , Bolsa Sinovial/patología , Pollos , Expresión Génica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Bazo/efectos de los fármacos , Bazo/patología , Timo/efectos de los fármacos , Timo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...