Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 359: 120961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696851

RESUMEN

Plastic pollution poses a significant environmental threat, particularly to marine ecosystems, as conventional plastics persist without degradation, accumulating plastic waste in landfills and natural environments. A promising alternative to address this issue involves the use of hydrogen donor solvents in plastic liquefaction, offering a dual benefit of waste reduction and the generation of valuable liquid products with diverse industrial applications. This review delves into plastic recycling methods with a specific focus on liquefaction using hydrogen donating solvents as an innovative approach to waste management. Liquefaction, conducted at moderate to high temperatures (280-450 °C) and pressures (7-30 MPa), yields high oil conversion using various solvents. This study examined the performance of hydrogen-donating solvents, including water, alcohols, decalin, and cyclohexane, in enhancing the oil yield while minimising the oxygen content. Supercritical water, recognised for its effective plastic degradation and chemical production capabilities, and alcohols, with their alkylating and hydrogen-donating properties, have emerged as key solvents in plastic liquefaction. The use of hydrogen donor solvents stabilizes the free radicals, enhancing the conversion of plastic waste into valuable products. In addition, this review addresses the economic efficiency of the liquefaction process.


Asunto(s)
Hidrógeno , Plásticos , Reciclaje , Solventes , Administración de Residuos , Solventes/química , Administración de Residuos/métodos , Plásticos/química , Hidrógeno/química
2.
Phys Chem Chem Phys ; 26(14): 10622-10632, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506646

RESUMEN

The thermochemical conversion of CO2 into methanol, a process known for its selectivity, often encounters a significant obstacle: the reverse water gas reaction. This problem emerges due to the demanding high temperatures and pressures, causing instability in catalytic performance. Recent endeavours have focused on innovatively designing catalysts capable of withstanding such conditions. Given the costliness of experimental approaches, a theoretical framework has emerged as a promising avenue for addressing the challenges in methanol production. It has been reported that transition metals, especially Pd, provide ideal binding sites for CO2 molecules and hydrogen atoms, facilitating their interactions and subsequent conversion to methanol. In the geometric single-atom form, their surface enables precise control over the reaction pathways and enhances the selectivity towards methanol. In our study, we employed density functional theory (DFT) to explore the conversion of CO2 to CH3OH on Pd1-Cu(111) and Pd1-Ag(111) single-atom alloy (SAA) catalysts. Our investigation involved mapping out the complex reaction pathways of CO2 hydrogenation to CH3OH using microkinetic reaction modelling and mechanisms. We examined three distinct pathways: the COOH* formation pathway, the HCOO* formation pathway, and the dissociation of CO2* to CO* pathway. This comprehensive analysis encompassed the determination of adsorption energies for all reactants, transition states, and resultant products. Additionally, we investigated the thermodynamic and kinetic profiles of individual reaction steps. Our findings emphasised the essential role of the Pd single atom in enhancing the activation of CO2, highlighting the key mechanism underlying this catalytic process. The favoured route for methanol generation on the Pd1-Ag(111) single-atom alloy (SAA) surface unfolds as follows: CO2* progresses through a series of transformations, transitioning successively into HCOO*, HCOOH*, H2COOH*, CH2O*, and CH2OH*, terminating in the formation of CH3OH*, due to lower activation energies and higher rate constants.

3.
Mol Biotechnol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286973

RESUMEN

In the world of fast fashion, textile industries are blooming rapidly to meet the consumer's demands. However, vast amounts of wastewater have been constantly produced, and it is becoming a serious environmental problem in the waterways. Although the technology for treating textile wastewater has been well reported and established, more sustainable efforts have taken the attention nowadays. Through the use of living Malaysian Ganoderma lucidum mycelial pellets (GL) and activated dolomite (AD) in the treatment system, the study explores the synergy between biosorption and physisorption as alternative treatment for textile wastewater. In the current work, mixture of GL premixed with AD (50:50; v/v) is used to treat industrial textile wastewater. The morphology, adsorption characteristics, and antibacterial activity of the adsorbents were studied. The mixture of adsorbents is capable of removing colours by 77.8% and reducing chemical oxygen demand (COD) by 75% within 48 h contact. Furthermore, the kinetic and adsorption had been studied and follow the pseudo-first-order kinetic model while both adsorption of Langmuir and Freundlich model was deduced from the treatment. In addition, antimicrobial activities from the treatment potentially reduced 10 × 101 CFU/mL after 48 h. The synergistic treatment by Ganoderma lucidum mycelial pellets and activated dolomite has immense potential in future wastewater treatment technology to obtain cleaner water.

4.
Bioengineered ; 13(7-12): 14903-14935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37105672

RESUMEN

Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.


Subject-based thematic review of fungal biomass usage and developmentPractical application of fungal biomass aligns with 3 Sustainable Development GoalsHigh performance is reported in medical, water management, buildings, and biofuel fieldsFungal biomass is the lucrative, essential, and future's way forward.


Asunto(s)
Agaricales , Ascomicetos , Basidiomycota , Humanos , Reactores Biológicos , Carbohidratos , Biomasa , Hongos/metabolismo
5.
ACS Omega ; 4(25): 21477-21486, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867543

RESUMEN

Superparamagnetic nanoparticles (SPNs) have been considered as one of the most studied nanomaterials for subsurface applications, including in enhanced oil recovery (EOR), due to their unique physicochemical properties. However, a comprehensive understanding of the effect of surface functionalization on the ability of the nanoparticles to improve secondary and tertiary oil recoveries remains unclear. Therefore, investigations on the application of bare and surface-functionalized SPNs in EOR using a sand pack were carried out in this study. Here, the as-prepared SPNs were functionalized using oleic acid (OA) and polyacrylamide (PAM) to obtain several types of nanostructure architectures such as OA-SPN, core-shell SPN@PAM, and SPN-PAM. Based on the result, it is found that both the viscosity and mobility of the nanofluids were significantly affected by not only the concentration of the nanoparticles but also the type and architecture of the surface modifier, which dictated particle hydrophilicity. According to the sand pack tests, the nanofluid containing SPN-PAM was able to recover as much as 19.28% of additional oil in a relatively low concentration (0.9% w/v). The high oil recovery enhancement was presumably due to the ability of suspended SPN-PAM to act as a mobility control and wettability alteration agent and facilitate the formation of a Pickering emulsion and disjoining pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...