Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e22103, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045219

RESUMEN

Cockroaches are very capable of mechanically transmitting harmful microorganisms, which is seen to be a severe hazard to the general public's health. The purpose of this study was the evaluation of cockroach bacterial contamination in various locations throughout Babylon. 300 cockroaches were caught from different wards of the hospital, restaurants, and houses. Using PBS buffer, the external surface of the cockroaches was washed to collect bacteria. Standard phenotypic methods were used to identify and classify bacteria. Afterward, the bacterial resistance to different antibiotics was investigated using the Kirby-Bauer disk diffusion susceptibility test. The 200 (66.6 %) American cockroaches including 56 (18.7 %) Blattella germanica and 44 (14.6 %) Blatta orientalis were identified. Noteworthy, 96.6 % of cockroaches were infected with different bacteria. Bacillus strains, coagulase-negative Staphylococci (CoNs), and Escherichia coli were the most frequent among the isolated bacteria. On average, the highest antibiotic resistance was detected to cefotaxime, ampicillin, cephalothin, and kanamycin. On the other hand, the isolated bacteria showed high sensitivity to gentamicin, nitrofurantoin, tetracycline, trimethoprim/sulfamethoxazole (SXT), and chloramphenicol. high antibiotic resistance in bacteria isolated from different wards of the hospital and the high potential of transmission of these bacteria by cockroaches is a serious warning for the health of society.

2.
Mol Biol Rep ; 50(12): 10579-10588, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932498

RESUMEN

The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.


Asunto(s)
Enfermedades Óseas Metabólicas , Ácidos Linoleicos Conjugados , Humanos , Osteoprotegerina/metabolismo , Glucosamina , Enfermedades Óseas Metabólicas/metabolismo , Ligando RANK/metabolismo , Osteoclastos/metabolismo
3.
Pathol Res Pract ; 251: 154905, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37925820

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias , Humanos , Respuesta de Proteína Desplegada , Transducción de Señal , Glucólisis
4.
Mol Biotechnol ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768503

RESUMEN

A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).

5.
Pathol Res Pract ; 248: 154631, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393667

RESUMEN

MicroRNA-126 (miR-126) has become a key player in the biology of cancer, playing a variety of functions in carcinogenesis and cancer development. The diagnostic and prognostic potential of miR-126 in diverse cancer types is summarized in this thorough analysis, with an emphasis on its role in tumor angiogenesis, invasion, metastasis, cell proliferation, apoptosis, and treatment resistance. MiR-126 dysregulation is linked to a higher risk of developing cancer and a worse prognosis. Notably, miR-126 affects tumor vascularization and development by targeting vascular endothelial growth factor-A (VEGF-A). Through its impact on genes involved in cell adhesion and migration, it also plays a vital part in cancer cell invasion and metastasis. Additionally, miR-126 controls drug resistance, apoptosis, and cell proliferation, which affects cancer cell survival and treatment response. It may be possible to develop innovative therapeutic approaches to stop tumor angiogenesis, invasion, and metastasis, as well as combat drug resistance by focusing on miR-126 or its downstream effectors. The versatility of miR-126's functions highlights the role that it plays in cancer biology. To understand the processes behind miR-126 dysregulation, pinpoint precise targets, and create efficient therapies, more investigation is required. Utilizing miR-126's therapeutic potential might have a significant influence on cancer treatment plans and patient outcomes.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Carcinogénesis/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética
6.
Pathol Res Pract ; 247: 154565, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267725

RESUMEN

Cholangiocarcinoma, also referred to as CCA, is a highly complex epithelial malignancy that can impact various organs and regions of the body, including the perihilar, intrahepatic, and distal organs. This cancer is characterized by the malignant growth of the epithelial lining in the bile ducts, which spans the entire biliary tree and is accountable for disease progression. The current state of affairs concerning CCA is concerning, with poor prognoses, high recurrence rates, and dismal long-term survival rates significantly burden healthcare facilities worldwide. Studies have identified numerous signaling pathways and molecules involved in the development and progression of CCA, including microRNAs, an important class of non-coding RNAs that have the ability to modulate these cellular signaling pathways significantly. In addition, microRNAs may serve as an innovative target for developing novel therapeutic approaches for CCA. In this review, we explore the underlying mechanisms and signaling pathways implicated in the initiation and progression of CCA, focusing on the future direction of utilizing microRNAs as a promising treatment option for this challenging malignancy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Humanos , MicroARNs/genética , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Conductos Biliares
7.
Med Oncol ; 40(7): 206, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37318610

RESUMEN

Natural killer (NK) cells are innate immune cells with cytotoxic potentials to kill cancerous cells in several mechanisms, which could be implied for cancer therapy. While potent, their antitumor activities specially for solid tumors impaired by inadequate tumor infiltration, suppressive tumor microenvironment, cancer-associated stroma cells, and tumor-supportive immune cells. Therefore, manipulating or reprogramming these barriers by prospective strategies might improve current immunotherapies in the clinic or introduce novel NK-based immunotherapies. NK-based immunotherapy could be developed in monotherapy or in combination with other therapeutic regimens such as oncolytic virus therapy and immune checkpoint blockade, as presented in this review.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Estudios Prospectivos , Inmunoterapia , Células Asesinas Naturales , Neoplasias/terapia , Microambiente Tumoral , Inmunoterapia Adoptiva
8.
J Gastrointest Cancer ; 54(4): 1046-1057, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37247115

RESUMEN

PURPOSE: Colorectal cancers are composed of heterogeneous cell populations in the concepts of genetic and functional degrees that among them cancer stem cells are identified with their self-renewal and stemness capability mediating primary tumorigenesis, metastasize, therapeutic resistance, and tumor recurrence. Therefore, understanding the key mechanisms of stemness in colorectal cancer stem cells (CRCSCs) provides opportunities to discover new treatments or improve existing therapeutic regimens. METHODS: We review the biological significance of stemness and the results of potential CRCSC-based targeted immunotherapies. Then, we pointed out the barriers to targeting CRCSCs in vivo and highlight new strategies based on synthetic and biogenic nanocarriers for the development of future anti-CRCSC trials. RESULTS: The CSCs' surface markers, antigens, neoantigens, and signaling pathways supportive CRCSCs or immune cells that are interacted with CRCSCs could be targeted by immune monotherapy or in formulation with developed nanocarriers to overcome the resistant mechanisms in immune evader CRCSCs. CONCLUSION: Identification molecular and cellular cues supporting stemness in CRCSCs and their targeting by nanoimmunotherpy can improve the efficacy of existed therapies or explore novel therapeutic options in future.


Asunto(s)
Neoplasias Colorrectales , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/patología , Transducción de Señal , Neoplasias Colorrectales/genética , Células Madre Neoplásicas/metabolismo , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...