Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712022

RESUMEN

Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.

3.
Res Sq ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076920

RESUMEN

Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.

4.
Elife ; 122023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108811

RESUMEN

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Ratones , Receptores Odorantes/genética , Epigenómica , Alelos , Epigénesis Genética
5.
Neuron ; 111(18): 2811-2830.e8, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37442132

RESUMEN

Ongoing pain is driven by the activation and modulation of pain-sensing neurons, affecting physiology, motor function, and motivation to engage in certain behaviors. The complexity of the pain state has evaded a comprehensive definition, especially in non-verbal animals. Here, in mice, we used site-specific electrophysiology to define key time points corresponding to peripheral sensitivity in acute paw inflammation and chronic knee pain models. Using supervised and unsupervised machine learning tools, we uncovered sensory-evoked coping postures unique to each model. Through 3D pose analytics, we identified movement sequences that robustly represent different pain states and found that commonly used analgesics do not return an animal's behavior to a pre-injury state. Instead, these analgesics induce a novel set of spontaneous behaviors that are maintained even after resolution of evoked pain behaviors. Together, these findings reveal previously unidentified neuroethological signatures of pain and analgesia at heightened pain states and during recovery.


Asunto(s)
Analgesia , Dolor , Ratones , Animales , Analgésicos , Manejo del Dolor , Neuronas , Nocicepción
6.
bioRxiv ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37293031

RESUMEN

Social grouping increases survival in many species, including humans1,2. By contrast, social isolation generates an aversive state (loneliness) that motivates social seeking and heightens social interaction upon reunion3-5. The observed rebound in social interaction triggered by isolation suggests a homeostatic process underlying the control of social drive, similar to that observed for physiological needs such as hunger, thirst or sleep3,6. In this study, we assessed social responses in multiple mouse strains and identified the FVB/NJ line as exquisitely sensitive to social isolation. Using FVB/NJ mice, we uncovered two previously uncharacterized neuronal populations in the hypothalamic preoptic nucleus that are activated during social isolation and social rebound and that orchestrate the behavior display of social need and social satiety, respectively. We identified direct connectivity between these two populations of opposite function and with brain areas associated with social behavior, emotional state, reward, and physiological needs, and showed that animals require touch to assess the presence of others and fulfill their social need, thus revealing a brain-wide neural system underlying social homeostasis. These findings offer mechanistic insight into the nature and function of circuits controlling instinctive social need and for the understanding of healthy and diseased brain states associated with social context.

7.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36993168

RESUMEN

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.

8.
Cell ; 186(3): 577-590.e16, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693373

RESUMEN

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.


Asunto(s)
Dopamina , Tacto , Ratones , Masculino , Femenino , Animales , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/metabolismo , Recompensa , Neuronas Dopaminérgicas/metabolismo , Optogenética , Receptores Acoplados a Proteínas G/metabolismo
9.
Neuromethods ; 178: 441-456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783537

RESUMEN

Objectively measuring and interpreting an animal's sensory experience remains a challenging task. This is particularly true when using preclinical rodent models to study pain mechanisms and screen for potential new pain treatment reagents. How to determine their pain states in a precise and unbiased manner is a hurdle that the field will need to overcome. Here, we describe our efforts to measure mouse somatosensory reflexive behaviors with greatly improved precision by high-speed video imaging. We describe how coupling sub-second ethograms of reflexive behaviors with a statistical reduction method and supervised machine learning can be used to create a more objective quantitative mouse "pain scale." Our goal is to provide the readers with a protocol of how to integrate some of the new tools described here with currently used mechanical somatosensory assays, while discussing the advantages and limitations of this new approach.

10.
Curr Opin Neurobiol ; 76: 102598, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780688

RESUMEN

With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.


Asunto(s)
Dolor Crónico , Dolor , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Humanos
12.
Curr Opin Neurobiol ; 73: 102527, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35453001

RESUMEN

Social touch-the affiliative skin-to-skin contact between individuals-can rapidly evoke emotions of comfort, pleasure, or calm, and is essential for mental and physical well-being. Physical isolation from social support can be devastating. During the COVID-19 pandemic, we observed a global increase in suicidal ideation, anxiety, domestic violence, and worsening of pre-existing physical conditions, alerting society to our need to understand the neurobiology of social touch and how it promotes normal health. Gaining a mechanistic understanding of how sensory neuron stimulation induces pleasure, calm, and analgesia may reveal untapped therapeutic targets in the periphery for treatment of anxiety and depression, as well as social disorders and traumas in which social touch becomes aversive. Bridging the gap between stimulation in the skin and positive affect in the brain-especially during naturally occurring social touch behaviors-remains a challenge to the field. However, with advances in mouse genetics, behavioral quantification, and brain imaging approaches to measure neuronal firing and neurochemical release, completing this mechanistic picture may be on the horizon. Here, we summarize some exciting new findings about social touch in mammals, emphasizing both the peripheral and central nervous systems, with attempts to bridge the gap between external stimulation and internal representations in the brain.


Asunto(s)
Encéfalo , Placer , Conducta Social , Tacto , Animales , Encéfalo/fisiología , Humanos , Ratones , Tacto/fisiología
13.
Neuron ; 110(5): 739-741, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35240061

RESUMEN

In this issue of Neuron, Liu et al. (2022) shed light on the neural circuits supporting pain- and anxiety-induced elevated breathing rhythms. They reveal PBL core-Oprm1 neurons projecting onto the CeA and shell-Oprm1 neurons projecting onto the preBötC as differential regulators of these behaviors.


Asunto(s)
Respiración , Centro Respiratorio , Tronco Encefálico , Humanos , Neuronas/fisiología , Dolor/metabolismo , Centro Respiratorio/fisiología
14.
Sci Adv ; 8(7): eabk2425, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171664

RESUMEN

Parental history of opioid exposure is seldom considered when prescribing opioids for pain relief. To explore whether parental opioid exposure may affect sensitivity to morphine in offspring, we developed a "rat pain scale" with high-speed imaging, machine learning, and mathematical modeling in a multigenerational model of paternal morphine self-administration. We find that the most commonly used tool to measure mechanical sensitivity in rodents, the von Frey hair, is not painful in rats during baseline conditions. We also find that male progeny of morphine-treated sires had no baseline changes in mechanical pain sensitivity but were more sensitive to the pain-relieving effects of morphine. Using RNA sequencing across pain-relevant brain regions, we identify gene expression changes within the regulator of G protein signaling family of proteins that may underlie this multigenerational phenotype. Together, this rat pain scale revealed that paternal opioid exposure increases sensitivity to morphine's pain-relieving effects in male offspring.


Asunto(s)
Analgésicos Opioides , Morfina , Analgésicos Opioides/efectos adversos , Animales , Masculino , Morfina/efectos adversos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ratas , Autoadministración
15.
STAR Protoc ; 2(1): 100322, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33598658

RESUMEN

Mouse models are essential for studying pain neurobiology and testing pain therapeutics. The reliance on assays that only measure the presence, absence, or frequency of a reflex have limited the reliability of preclinical pain studies. Our high-speed videography protocol overcomes this by projecting the discrete sub-second kinematic behavioral features induced by hind paw stimulation onto a "mouse pain scale." This provides a more objective and robust pain measurement in mice by quantifying the quality of the stimulus-induced hind paw reflex. For complete details on the use and execution of this protocol, please refer to Abdus-Saboor et al. (2019).


Asunto(s)
Dimensión del Dolor , Dolor/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones
16.
Neurosci Lett ; 748: 135689, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33582191

RESUMEN

Mas-related G coupled receptors (Mrgprs) are a superfamily of receptors expressed in sensory neurons that are known to transmit somatic sensations from the skin to the central nervous system. Interestingly, Mrgprs have recently been implicated in sensory and motor functions of mucosal-associated neuronal circuits. The gastrointestinal and pulmonary tracts are constantly exposed to noxious stimuli. Therefore, it is likely that neuronal Mrgpr signaling pathways in mucosal tissues, akin to their family members expressed in the skin, might relay messages that alert the host when mucosal tissues are affected by damaging signals. Further, Mrgprs have been proposed to mediate the cross-talk between sensory neurons and immune cells that promotes host-protective functions at barrier sites. Although the mechanisms by which Mrgprs are activated in mucosal tissues are not completely understood, these exciting studies implicate Mrgprs as potential therapeutic targets for conditions affecting the intestinal and airway mucosa. This review will highlight the central role of Mrgpr signaling pathways in the regulation of homeostasis at mucosal tissues.


Asunto(s)
Ganglios Espinales/metabolismo , Membrana Mucosa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Humanos , Prurito/metabolismo , Transducción de Señal/fisiología
17.
Elife ; 92020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32758355

RESUMEN

Objective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here, we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score. Automated paw tracking combined with PAWS reveals a behaviorally divergent mouse strain that displays hypersensitivity to mechanical stimuli. To demonstrate the efficacy of PAWS for detecting spinally versus centrally mediated behavioral responses, we chemogenetically activated nociceptive neurons in the amygdala, which further separated the pain-related behavioral features and the resulting pain score. Taken together, this automated pain quantification approach will increase objectivity in collecting rigorous behavioral data, and it is compatible with other neural circuit dissection tools for determining the mouse pain state.


Asunto(s)
Automatización de Laboratorios/instrumentación , Dimensión del Dolor/métodos , Animales , Femenino , Masculino , Ratones , Factores de Tiempo
19.
Sci Rep ; 10(1): 2759, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066827

RESUMEN

Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.


Asunto(s)
Pulpa Dental/fisiopatología , Hiperalgesia/diagnóstico , Proteínas del Tejido Nervioso/genética , Dimensión del Dolor/métodos , Dolor/diagnóstico , Traumatismos de los Dientes/diagnóstico , Animales , Conducta Animal , Pulpa Dental/lesiones , Pulpa Dental/inervación , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Dolor/genética , Dolor/fisiopatología , Índice de Severidad de la Enfermedad , Traumatismos de los Dientes/genética , Traumatismos de los Dientes/fisiopatología , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología
20.
Curr Psychiatry Rep ; 21(12): 134, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31807945

RESUMEN

PURPOSE OF REVIEW: This review aims to summarize the current body of behavioral, physiological, and molecular knowledge concerning tactile sensitivity in autism spectrum disorder (ASD), with a focus on recent studies utilizing rodent models. RECENT FINDINGS: Mice with mutations in the ASD-related genes, Shank3, Fmr1, UBE3A, and Mecp2, display tactile abnormalities. Some of these abnormalities appear to be caused by mutation-related changes in the PNS, as opposed to changes in the processing of touch stimuli in the CNS, as previously thought. There is also growing evidence suggesting that peripheral mechanisms may contribute to some of the core symptoms and common comorbidities of ASD. Researchers are therefore beginning to assess the therapeutic potential of targeting the PNS in treating some of the core symptoms of ASD. Sensory abnormalities are common in rodent models of ASD. There is growing evidence that sensory hypersensitivity, especially tactile sensitivity, may contribute to social deficits and other autism-related behaviors.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Investigación Biomédica/tendencias , Tacto , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Humanos , Fenotipo , Tacto/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...