Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Health ; 21(1): 102, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36289513

RESUMEN

BACKGROUND: Ingestion of fluoride in drinking water has been shown to result in increased cellular markers of inflammation in rodent models. However, the approximately 5-10 × increase in water fluoride concentrations required in rat and mouse models to obtain plasma fluoride concentrations similar to those found in humans has made relevant comparisons of animal to human studies difficult to assess. As an increased white blood cell count (WBC) is a marker of inflammation in humans, we used available NHANES survey data to assess the associations between plasma fluoride levels in the U.S. and blood cell counts children and adolescents.   METHODS: Multiple linear regressions were done to determine the association of blood cell counts and plasma fluoride in publicly available NHANES survey data from the 2013-2014 and 2015-2016 cycles. Plasma fluoride concentration measurements were available only for children aged 6 to 19, inclusive, and therefore this subpopulation was used for all analyses. Covariate predictors along with plasma fluoride were age, ethnicity, gender, and Body Mass Index (BMI).  RESULTS: Plasma fluoride was significantly positively associated with water fluoride, total WBC count, segmented neutrophils, and monocytes, and negatively associated with red blood cell count when adjusted for age, gender and BMI. CONCLUSION: Our finding that neutrophils and monocytes are associated with higher plasma fluoride in U.S. children and adolescents is consistent with animal data showing fluoride related effects of increased inflammation. These findings suggest the importance of further studies to assess potential mechanisms that are involved in absorption and filtration of ingested fluoride, particularly in tissues and organs such as the small intestine, liver and kidney.


Asunto(s)
Agua Potable , Fluoruros , Niño , Ratones , Estados Unidos/epidemiología , Adolescente , Humanos , Ratas , Animales , Fluoruros/análisis , Encuestas Nutricionales , Agua Potable/análisis , Inflamación/inducido químicamente , Inflamación/epidemiología , Recuento de Leucocitos , Células Sanguíneas/química , Células Sanguíneas/metabolismo
2.
PeerJ ; 10: e14040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172496

RESUMEN

Background: Hematopoietic cell transplantation (HCT) is a potentially curative therapy for a wide range of pediatric malignant and nonmalignant diseases. However, complications, including blood stream infection (BSI) remain a major cause of morbidity and mortality. While certain bacteria that are abundant in the oral microbiome, such as S. mitis, can cause BSI, the role of the oral microbial community in the etiology of BSI is not well understood. The finding that the use of xylitol wipes, which specifically targets the cariogenic bacteria S. mutans is associated with reduced BSI in pediatric patients, lead us to investigate dental caries as a risk factor for BSI. Methods: A total of 41 pediatric patients admitted for allogenic or autologous HCT, age 8 months to 25 years, were enrolled. Subjects with high dental caries risk were identified as those who had dental restorations completed within 2 months of admission for transplant, or who had untreated decay. Fisher's exact test was used to determine if there was a significant association between caries risk and BSI. Dental plaque and saliva were collected on a cotton swab from a subset of four high caries risk (HCR) and four low caries risk (LCR) children following pretransplant conditioning. 16SrRNA sequencing was used to compare the microbiome of HCR and LCR subjects and to identify microbes that were significantly different between the two groups. Results: There was a statistically significant association between caries risk and BSI (p < 0.035) (Fisher's exact test). Multivariate logistic regression analysis showed children in the high dental caries risk group were 21 times more likely to have BSI, with no significant effect of age or mucositis severity. HCR subjects showed significantly reduced microbial alpha diversity as compared to LCR subjects. LEfse metagenomic analyses, showed the oral microbiome in HCR children enriched in order Lactobacillales. This order includes Streptococcus and Lactobacillus, both which contain bacteria primarily associated with dental caries. Discussion: These findings support the possibility that the cariogenic microbiome can enhance the risk of BSI in pediatric populations. Future metagenomic analyses to measure microbial differences at, before, and after conditioning related to caries risk, may further unravel the complex relationship between the oral microbiome, and whether it affects health outcomes such as BSI.


Asunto(s)
Infecciones Bacterianas , Caries Dental , Trasplante de Células Madre Hematopoyéticas , Sepsis , Humanos , Niño , Caries Dental/epidemiología , Bacterias , Streptococcus , Factores de Riesgo , Trasplante de Células Madre Hematopoyéticas/efectos adversos
3.
J Biol Chem ; 298(5): 101807, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271849

RESUMEN

Amel, the gene encoding the amelogenin protein involved in enamel formation, is highly alternatively spliced. When exon4 is excised, it can form a mature miRNA (miR-exon4) that has previously been suggested to indirectly regulate expression of the Runt-related transcription factor 2 (Runx2) involved in bone development in ameloblasts and osteoblasts. However, the precise mechanism of this regulation is unclear. In this study, we aimed to identify direct targets of miR-exon4. The transcription factor family nuclear factor I/A (NFI/A) is known to negatively regulate expression of Runx2 and is among the most highly predicted direct targets of miR-exon4 that link to Runx2. Immunostaining detected NFI/A in osteoblasts and ameloblasts in vivo, and reporter assays confirmed direct interaction of the Nfia 3'-UTR and miR-exon4. In addition, silencing of Nfia in MC3T3-E1-M14 osteoblasts resulted in subsequent downregulation of Runx2. In a monoclonal subclone (mi2) of MC3T3-E1 cells wherein mature miR-exon4 was functionally inhibited, we observed significantly downregulated Runx2 expression. We showed that NFI/A was significantly upregulated in mi2 cells at both mRNA and protein levels. Furthermore, quantitative proteomics and pathway analysis of gene expression in mi2 cells suggested that miR-exon4 could directly target Prkch (protein kinase C-eta), possibly leading to RUNX2 regulation through mechanistic target of rapamycin kinase activation. Reporter assays also confirmed the direct interaction of miR-exon4 and the 3'-UTR of Prkch, and Western blot analysis confirmed significantly upregulated mechanistic target of rapamycin kinase phosphorylation in mi2 cells. Taken together, we conclude that Nfia and Prkch expression negatively correlates with miR-exon4-mediated Runx2 regulation in vivo and in vitro, suggesting miR-exon4 directly targets Nfia and Prkch to regulate Runx2.


Asunto(s)
Amelogenina/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , MicroARNs , Factores de Transcripción NFI/metabolismo , Proteína Quinasa C/metabolismo , Regiones no Traducidas 3' , Animales , Diferenciación Celular , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Exones , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción NFI/genética , Osteoblastos/metabolismo , Osteogénesis/fisiología , Sirolimus/metabolismo
4.
Biol Trace Elem Res ; 199(8): 3021-3034, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33113116

RESUMEN

Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of ß-catenin and phosphorylated p65/NFκB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 µM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, ß-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/ß-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.


Asunto(s)
Fluoruros , Sialoglicoproteínas , Animales , Dentina , Proteínas de la Matriz Extracelular/genética , Fluoruros/toxicidad , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/genética
5.
Environ Health ; 19(1): 38, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32248806

RESUMEN

BACKGROUND: Previous studies have shown a correlation between fluoride concentrations in urine and community water fluoride concentrations. However, there are no studies of the relationship between community water fluoridation, urine, serum, and amniotic fluid fluoride concentrations in pregnant women in the US. The aim of this study was to determine the relationship between maternal urine fluoride (MUF), maternal urine fluoride adjusted for specific gravity (MUFSG), maternal serum fluoride (MSF), amniotic fluid fluoride (AFF) concentrations during pregnancy, and community water fluoridation in Northern California. METHODS: Archived samples of urine, serum and amniotic fluid collected from second trimester pregnant women in Northern California from 47 different communities in Northern California and one from Montana (n = 48), were analyzed for fluoride using an ion specific electrode following acid microdiffusion. Women's addresses were matched to publicly reported water fluoride concentrations. We examined whether fluoride concentrations in biospecimens differed by fluoridation status of the community water, and determined the association between water fluoride concentrations and biospecimen fluoride concentrations using linear regression models adjusted for maternal age, smoking, Body Mass Index (BMI), race/ethnicity, and gestational age at sample collection. RESULTS: Fluoride concentrations in the community water supplies ranged from 0.02 to 1.00 mg/L. MUF, MSF , and AFF concentrations were significantly higher in pregnant women living in communities adhering to the U.S. recommended water fluoride concentration (0.7 mg/L), as compared with communities with less than 0.7 mg/L fluoride in drinking water. When adjusted for maternal age, smoking status, BMI, race/ethnicity, and gestational age at sample collection, a 0.1 mg/L increase in community water fluoride concentration was positively associated with higher concentrations of MUF (B = 0.052, 95% CI:0.019,0.085), MUFSG (B = 0.028, 95% CI: -0.006, 0.062), MSF (B = 0.001, 95% CI: 0.000, 0.003) and AFF (B = 0.001, 95% CI: 0.000, 0.002). CONCLUSIONS: We found universal exposure to fluoride in pregnant women and to the fetus via the amniotic fluid. Fluoride concentrations in urine, serum, and amniotic fluid from women were positively correlated to public records of community water fluoridation. Community water fluoridation remains a major source of fluoride exposure for pregnant women living in Northern California.


Asunto(s)
Líquido Amniótico/química , Fluoruración , Fluoruros/metabolismo , Exposición Materna/estadística & datos numéricos , Adulto , California , Agua Potable/química , Femenino , Feto/química , Fluoruros/sangre , Fluoruros/orina , Humanos , Montana , Embarazo , Segundo Trimestre del Embarazo , Adulto Joven
6.
Physiol Behav ; 206: 76-83, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30904570

RESUMEN

Fluoride ingestion has been linked to changes in behavior in mice and rats, related to dose, sex of the animal, and the timing of exposure. Previous studies have shown the behavior of female rats to be most affected by postnatal fluoride exposure, and in this study we determined the effects of postnatal fluoride exposure on anxiety related behavior and serotonin. Mice given 50 ppm fluoride in drinking water had increased entries in the open arms of the elevated plus maze, suggesting reduced anxiety. Both peripheral and central serotonin was increased in the fluoride treated mice. In a cohort of children drinking water containing 2.5 ppm fluoride, serum serotonin was also increased as compared to controls. The mechanisms by which fluoride results in an increase peripheral and central serotonin are not well understood, but warrant further study, as these effects may also be relevant to prenatal fluoride related changes in behavior in both mice and humans.


Asunto(s)
Conducta Animal/efectos de los fármacos , Fluoruros/administración & dosificación , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Serotonina/sangre , Conducta Social , Administración Oral , Animales , Química Encefálica , Femenino , Fluoruros/análisis , Ratones
7.
Front Physiol ; 8: 925, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29249975

RESUMEN

Fluorosed maturation stage enamel is hypomineralized in part due to a delay in the removal of matrix proteins to inhibit final crystal growth. The delay in protein removal is likely related to reduced expression of kallikrein-related peptidase 4 (KLK4), resulting in a reduced matrix proteinase activity that found in fluorosed enamel. Klk4 transcription is known to be regulated in other cell types by androgen receptor (AR) and progesterone receptors (PR). In this study, we determined the possible role of fluoride in down-regulation of KLK4 expression through changes in AR and PR. Immunohistochemical localization showed that both AR and PR nuclear translocation was suppressed in fluoride exposed mice. However, when AR signaling was silenced in mouse ameloblast-lineage cells (ALCs), expression of both Pgr and Klk4 were increased. Similar to the effect from AR silencing, fluoride also upregulated Pgr in ALCs, but downregulated Klk4. This finding suggests that though suppression of AR transactivation by fluoride increases Prg expression, inhibition of PR transactivation by fluoride has a much greater effect, ultimately resulting in downregulation of Klk4 expression. These findings indicate that in ameloblasts, PR has a dominant role in regulating Klk4 expression. We found that when AR was retained in the cytoplasm in the presence of fluoride, that co-localized with heat shock protein 90 (HSP90), a well-known chaperone for steroid hormone receptors. HSP90 also known to regulate TGF-ß signaling. Consistent with the effect of fluoride on AR and HSP90, we found evidence of reduced TGF-ß signaling activity in fluorosed ameloblasts as reduced immunolocalization of TGFB1 and TGFBR-2 and a significant increase in Cyclin D1 mRNA expression, which also possibly contributes to the reduced AR signaling activity. In vitro, when serum was removed from the media, aluminum was required for fluoride to inhibit the dissociation of HSP90 from AR. In conclusion, fluoride related downregulation of Klk4 is associated with reduced nuclear translocation of AR and PR, and also reduced TGF-ß signaling activity, all of which are regulated by HSP90. We suggest that a common mechanism by which fluoride affects AR, PR, and TGF-ß signaling is through inhibiting ATP-dependent conformational cycling of HSP90.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...