Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
EBioMedicine ; : 105102, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38614865

RESUMEN

BACKGROUND: Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS: We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS: CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION: MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.

2.
Cancer Sci ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494600

RESUMEN

Bromodomain and extraterminal domain (BET) family proteins are epigenetic master regulators of gene expression via recognition of acetylated histones and recruitment of transcription factors and co-activators to chromatin. Hence, BET family proteins have emerged as promising therapeutic targets in cancer. In this study, we examined the functional role of bromodomain containing 3 (BRD3), a BET family protein, in colorectal cancer (CRC). In vitro and vivo analyses using BRD3-knockdown or BRD3-overexpressing CRC cells showed that BRD3 suppressed tumor growth and cell cycle G1/S transition and induced p21 expression. Clinical analysis of CRC datasets from our hospital or The Cancer Genome Atlas revealed that BET family genes, including BRD3, were overexpressed in tumor tissues. In immunohistochemical analyses, BRD3 was observed mainly in the nucleus of CRC cells. According to single-cell RNA sequencing in untreated CRC tissues, BRD3 was highly expressed in malignant epithelial cells, and cell cycle checkpoint-related pathways were enriched in the epithelial cells with high BRD3 expression. Spatial transcriptomic and single-cell RNA sequencing analyses of CRC tissues showed that BRD3 expression was positively associated with high p21 expression. Furthermore, overexpression of BRD3 combined with knockdown of, a driver gene in the BRD family, showed strong inhibition of CRC cells in vitro. In conclusion, we demonstrated a novel tumor suppressive role of BRD3 that inhibits tumor growth by cell cycle inhibition in part via induction of p21 expression. BRD3 activation might be a novel therapeutic approach for CRC.

3.
Genes Cells ; 29(1): 17-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984375

RESUMEN

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Fosforilación , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Vacuolas/metabolismo
4.
Int Cancer Conf J ; 12(4): 274-278, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37577350

RESUMEN

Atezolizumab plus bevacizumab is the first-line regimen in Japan for hepatocellular carcinoma following the results of the IMbrave 150 trial. However, the safety and efficiency of atezolizumab plus bevacizumab in older patients, especially in the oldest-old patients aged over 80 years, have not been thoroughly studied and is still controversial. Eighteen months ago, a 90-year-old woman underwent a laparoscopic hepatectomy (S6) for her primary hepatocellular carcinoma (S6, 2 cm). Nine months after the first surgery, she received transcatheter arterial chemoembolization treatment for solitary hepatocellular carcinoma recurrence (S8, 2 cm). The subsequent recurrence (S3, 1 cm; S5, 2 cm; S8, 1 cm) was uncovered by radiological assessment 1 year after transcatheter arterial chemoembolization treatment. We then initiated chemotherapy treatment with lenvatinib at 8 mg daily. Despite reducing the lenvatinib dosage, the adverse event of severe fatigue and asitia did not resolve; therefore, the regimen of atezolizumab + bevacizumab combination therapy was changed to be started. After the first 2 months, tumor regression was observed on computed tomography; the patient tolerated the atezolizumab + bevacizumab combination regimen over 8 months for 10 cycles without any adverse effects. She finally showed a complete response; no recurrence developed 1 year after the complete response. Therefore, older adult patients may benefit highly from atezolizumab plus bevacizumab with appropriate patient selection.

5.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37132654

RESUMEN

Collective cell migration is the coordinated movement of multiple cells connected by cadherin-based adherens junctions and is essential for physiological and pathological processes. Cadherins undergo dynamic intracellular trafficking, and their surface level is determined by a balance between endocytosis, recycling and degradation. However, the regulatory mechanism of cadherin turnover in collective cell migration remains elusive. In this study, we show that the Bin/amphiphysin/Rvs (BAR) domain protein pacsin 2 (protein kinase C and casein kinase substrate in neurons protein 2) plays an essential role in collective cell migration by regulating N-cadherin (also known as CDH2) endocytosis in human cancer cells. Pacsin 2-depleted cells formed cell-cell contacts enriched with N-cadherin and migrated in a directed manner. Furthermore, pacsin 2-depleted cells showed attenuated internalization of N-cadherin from the cell surface. Interestingly, GST pull-down assays demonstrated that the pacsin 2 SH3 domain binds to the cytoplasmic region of N-cadherin, and expression of an N-cadherin mutant defective in binding to pacsin 2 phenocopied pacsin 2 RNAi cells both in cell contact formation and N-cadherin endocytosis. These data support new insights into a novel endocytic route of N-cadherin in collective cell migration, highlighting pacsin 2 as a possible therapeutic target for cancer metastasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Cadherinas , Neoplasias , Humanos , Uniones Adherentes/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Endocitosis/fisiología , Neoplasias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
6.
J Surg Case Rep ; 2023(12): rjad678, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38164206

RESUMEN

Intrahepatic foreign bodies are rarely reported. Although rare, a few reports of swallowed foreign bodies straying into the liver from the gastrointestinal tract have been published. Herein, we report a case in which an asymptomatic intrahepatic needle was removed laparoscopically. An 81-year-old woman presented to our hospital with an abnormal shadow on her abdominal X-ray image. Abdominal computed tomography displayed a needle-like shadow obliquely lying in the lateral segment of the left lobe of the liver. No subjective symptoms were reported; however, the patient underwent laparoscopic extraction. The postoperative course was good, and the patient was discharged without any complications. We also present a literature review of 27 patients with intrahepatic foreign bodies, a sewing needle.

7.
Front Cell Infect Microbiol ; 12: 992198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159643

RESUMEN

Irgb6 is a member of interferon γ-induced immunity related GTPase (IRG), and one of twenty "effector" IRGs, which coordinately attack parasitophorous vacuole membrane (PVM), causing death of intracellular pathogen. Although Irgb6 plays a pivotal role as a pioneer in the process of PVM disruption, the direct effect of Irgb6 on membrane remained to be elucidated. Here, we utilized artificial lipid membranes to reconstitute Irgb6-membrane interaction in vitro, and revealed that Irgb6 directly deformed the membranes. Liposomes incubated with recombinant Irgb6 were drastically deformed generating massive tubular protrusions in the absence of guanine nucleotide, or with GMP-PNP. Liposome deformation was abolished by incubating with Irgb6-K275A/R371A, point mutations at membrane targeting residues. The membrane tubules generated by Irgb6 were mostly disappeared by the addition of GTP or GDP, which are caused by detachment of Irgb6 from membrane. Binding of Irgb6 to the membrane, which was reconstituted in vitro using lipid monolayer, was stimulated at GTP-bound state. Irgb6 GTPase activity was stimulated by the presence of liposomes more than eightfold. Irgb6 GTPase activity in the absence of membrane was also slightly stimulated, by lowering ionic strength, or by increasing protein concentration, indicating synergistic stimulation of the GTPase activity. These results suggest that membrane targeting of Irgb6 and resulting membrane deformation does not require GTP, but converting into GTP-bound state is crucial for detaching Irgb6 from the membrane, which might coincident with local membrane disruption.


Asunto(s)
Toxoplasma , GTP Fosfohidrolasas/metabolismo , Guanilil Imidodifosfato/metabolismo , Interferón gamma/metabolismo , Lípidos , Liposomas/metabolismo
8.
Plants (Basel) ; 11(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015482

RESUMEN

Phytoextraction by high-Cd-accumulating rice lacking a functional OsHMA3 allele is promising for Cd removal from paddy soils. To increase rice Cd extraction efficiency, we developed a new high-Cd variety, TJN25-11. For this, we pyramided a nonfunctional OsHMA3 allele from a high-Cd variety, Jarjan, and two QTLs for increased shoot Cd concentrations, which were discovered in a mapping population derived from a high-Cd variety, Nepal 555, and a low-Cd variety, Tachisugata. In two Cd-contaminated paddy fields under drained aerobic soil conditions, TJN25-11 presented significantly higher Cd concentrations in the straw and panicles than the OsHMA3-deficient varieties TJTT8 and Cho-ko-koku. Among the varieties, TJN25-11 had a relatively high shoot biomass, resulting in the highest Cd accumulation in the shoots. The soil Cd decreased by approximately 20% after TJN25-11 growth. The amount of Cd that accumulated in the TJN25-11 aerial parts was much greater than the amount of Cd that decreased in the topsoil, suggesting that Cd was absorbed from deeper soil layers. Thus, we revealed the effects of QTL pyramiding on shoot Cd accumulation and Cd phytoextraction efficiency. Since TJN25-11 has favorable agronomic traits for compatibility with Japanese cultivation systems, this variety could be useful for Cd phytoextraction in Cd-contaminated paddy fields.

9.
J Exp Bot ; 73(18): 6475-6489, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35788288

RESUMEN

Decreasing cadmium (Cd) concentrations in rice grains can effectively reduce potential risks to human health because rice is the major contributor to Cd intake in many diets. Among several genes involved in rice Cd accumulation, the loss of function of OsNRAMP5 is known to be effective in reducing grain concentration by inhibiting root uptake. However, disruption of this gene simultaneously decreases manganese (Mn) uptake because OsNRAMP5 is a major Mn transporter. With the aim of improving Mn uptake in OsNRAMP5 mutants while still restricting the grain Cd concentration below the upper limit of international standards, we identified a novel OsNRAMP5 allele encoding a protein in which glutamine (Q) at position 337 was replaced by lysine (K). The mutant carrying the OsNRAMP5-Q337K allele showed intermediate Cd and Mn accumulation between that of the wild-type and OsNRAMP5-knockout lines, and exhibited more resistance to Mn deficiency than the knockout lines. Different amino acid substitutions at position Q337 significantly affected the Cd and Mn transport activity in yeast cells, indicating that it is one of the crucial sites for OsNRAMP5 function. Our results suggest that the OsNRAMP5-Q337K allele might be useful for reducing grain Cd concentrations without causing severe Mn deficiency in rice cultivars through DNA marker-assisted breeding.


Asunto(s)
Cadmio , Oryza , Contaminantes del Suelo , Alelos , Cadmio/metabolismo , Grano Comestible/genética , Marcadores Genéticos , Glutamina , Lisina/metabolismo , Manganeso/metabolismo , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
10.
Front Cell Dev Biol ; 10: 884509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620056

RESUMEN

Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with α-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.

11.
Oncology ; 100(2): 101-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34724663

RESUMEN

INTRODUCTION: Fanconi anemia complementation group E (FANCE) is a Fanconi anemia (FA) pathway gene that regulates DNA repair. We evaluated the clinical relevance of FANCE expression in hepatocellular carcinoma (HCC). METHODS: First, the associations between the expression of FA pathway genes including FANCE and clinical outcomes in HCC patients were analyzed in 2 independent cohorts: The Cancer Genome Atlas (TCGA, n = 373) and our patient cohort (n = 53). Localization of FANCE expression in HCC tissues was observed by immunohistochemical staining. Gene set enrichment analysis (GSEA) and gene network analysis (SiGN_BN) were conducted using the TCGA dataset. Next, an in vitro proliferation assay was performed using FANCE-knockdown HCC cell lines (HuH7 and HepG2). The association between mRNA expression of FANCE and that of DNA damage response genes in HCC was analyzed using TCGA and Cancer Cell Line Encyclopedia datasets. Finally, the association between FANCE mRNA expression and overall survival (OS) in various digestive carcinomas was analyzed using TCGA data. RESULTS: FANCE was highly expressed in HCC cells. Multivariate analysis indicated that high FANCE mRNA expression was an independent factor predicting poor OS. GSEA revealed a positive relationship between enhanced FANCE expression and E2F and MYC target gene expression in HCC tissues. FANCE knockdown attenuated the proliferation of HCC cells, as well as reduced cdc25A expression and elevated histone H3 pSer10 expression. SiGN_BN revealed that FANCE mRNA expression was positively correlated with DNA damage response genes (H2A histone family member X and checkpoint kinase 1) in HCC tissues. Significant effects of high FANCE expression on OS were observed in hepatobiliary pancreatic carcinomas, including HCC. CONCLUSIONS: FANCE may provide a potential therapeutic target and biomarker of poor prognosis in HCC, possibly by facilitating tumor proliferation, which is mediated partly by cell cycle signaling activation.


Asunto(s)
Biomarcadores de Tumor/genética , Proteína del Grupo de Complementación E de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación E de la Anemia de Fanconi/metabolismo , Regulación hacia Arriba , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción E2F/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Análisis de Supervivencia
12.
Hum Mutat ; 43(2): 169-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837441

RESUMEN

A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown. In this study, we identified five novel DNM2 variants in our cohort. To establish the pathogenicity of these variants without using clinicopathological information, we used a simple in cellulo imaging-based assay for T-tubule-like structures to provide quantitative data that enable objective determination of pathogenicity by novel DNM2 variants. With this assay, we demonstrated that the phenotypes induced by mutant dynamin 2 in cellulo are well correlated with biochemical gain-of-function features of mutant dynamin 2 as well as the clinicopathological phenotypes of each patient. Our approach of combining an in cellulo assay with clinical information of the patients also explains the course of a disease progression by the pathogenesis of each variant in DNM2-associated CNM.


Asunto(s)
Dinamina II , Miopatías Estructurales Congénitas , Dinamina II/genética , Humanos , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/genética , Virulencia
13.
Surg Case Rep ; 7(1): 210, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34536155

RESUMEN

BACKGROUND: Suture granuloma with hydronephrosis after abdominal surgery is extremely rare. We herein report a successfully treated case of suture granuloma with hydronephrosis caused by ileostomy closure after rectal cancer surgery. CASE PRESENTATION: A 63-year-old male underwent laparoscopic low anterior resection with covering ileostomy. Two months after primary operation, ileostomy closure was performed with two layered hand-sewn suture (Albert-Lembert method) using absorbable suture. In that operation, marginal blood vessels in the mesentery were ligated with silk suture. The patient had remained in remission with no evidence of tumor recurrence, however, 2 years and 5 months after primary surgery, a contrast-enhanced computed tomography (CT) scan showed a mass-forming lesion on the right external iliac artery (43 × 26 mm) and hydronephrosis. Positron emission tomography/computed tomography (PET/CT) showed a mass-forming lesion without high accumulation, which obstructed the right ureter. Recurrence could not be ruled out due to the rapid appearance of tumor and hydronephrosis in the short-term period. Thus, the patient underwent laparotomy. The tumor located in the mesentery near the anastomosis of ileostomy closure and it was strongly adherent to the retroperitoneum, which obstructed the right ureter. The adhesion between the tumor and ureter was carefully dissected and tumor resection with partial small bowel resection was then performed with preservation of the ureter using ureteral stents. Pathological examination of the tumor revealed fibrous proliferation of foreign body granuloma. In the resected tumor, sutures with foreign giant cells were found. Therefore, we diagnosed the tumor as silk suture granuloma, which was caused by the silk suture used to ligate blood vessels of the mesentery at the ileostomy closure. The patient remained well with no evidence of tumor recurrence as 5 years after the primary operation of rectal cancer. CONCLUSIONS: Suture granuloma is a rare surgery-related complication in the postoperative surveillance of patients with colorectal cancer. If suture granuloma mimicking local recurrence is a differential diagnosis, it would be important to consider to avoid unnecessary extended resection.

14.
Cancer Genomics Proteomics ; 18(4): 521-529, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34183385

RESUMEN

BACKGROUND/AIM: Peritoneal dissemination (PD) occurs frequently in gastric cancer (GC) and is fatal. The interactions between tumor cells and stromal cells are critical for cancer progression. Our aim was to identify a novel PD-associated gene derived from stromal cells in GC. MATERIALS AND METHODS: Among the candidate PD-associated genes identified in our previous study, we focused on spondin-2 (SPON2), an extracellular matrix-secreted protein. Clinicopathological and prognostic analyses of SPON2 mRNA expression were performed using GC datasets. Localization of SPON2 expression was assessed by immunohistochemistry. In vitro migration assay and immunofluorescence staining were also conducted using GC cell lines. RESULTS: SPON2 was expressed in and secreted from cancer-associated fibroblasts in GC. High expression of SPON2 in tumor tissues was correlated with PD, tumor size and poor prognosis in GC. The motility of GC cells was increased by treatment with a SPON2 recombinant protein in vitro. CONCLUSION: Cancer-associated fibroblast-derived SPON2 may promote PD, in part, by facilitating GC cell motility and serve as a predictive marker for PD in GC.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Movimiento Celular , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Gástricas/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Bases de Datos Genéticas , Humanos , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/metabolismo , Pronóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Carga Tumoral , Regulación hacia Arriba
15.
Plant Cell Physiol ; 62(5): 913-921, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826734

RESUMEN

Molybdenum (Mo) is an essential element for plant growth and is utilized by several key enzymes in biological redox processes. Rice assimilates molybdate ions via OsMOT1;1, a transporter with a high affinity for molybdate. However, other systems involved in the molecular transport of molybdate in rice remain unclear. Here, we characterized OsMOT1;2, which shares amino acid sequence similarity with AtMOT1;2 and functions in vacuolar molybdate export. We isolated a rice mutant harboring a complete deletion of OsMOT1;2. This mutant exhibited a significantly lower grain Mo concentration than the wild type (WT), but its growth was not inhibited. The Mo concentration in grains was restored by the introduction of WT OsMOT1;2. The OsMOT1;2-GFP protein was localized to the vacuolar membrane when transiently expressed in rice protoplasts. At the reproductive growth stage of the WT plant, OsMOT1;2 was highly expressed in the 2nd and lower leaf blades and nodes. The deletion of OsMOT1;2 impaired interorgan Mo allocation in aerial parts: relative to the WT, the mutant exhibited decreased Mo levels in the 1st and 2nd leaf blades and grains but increased Mo levels in the 2nd and lower leaf sheaths, nodes and internodes. When the seedlings were exposed to a solution with a high KNO3 concentration in the absence of Mo, the mutant exhibited significantly lower nitrate reductase activity in the shoots than the WT. Our results suggest that OsMOT1;2 plays an essential role in interorgan Mo distribution and molybdoenzyme activity in rice.


Asunto(s)
Proteínas Portadoras/metabolismo , Molibdeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Molibdeno/farmacocinética , Mutación , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Distribución Tisular
16.
Plant Physiol ; 186(1): 611-623, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33620496

RESUMEN

Paddy fields are anaerobic and facilitate arsenite (As(III)) elution from the soil. Paddy-field rice accumulates arsenic (As) in its grains because silicate transporters actively assimilate As(III) during the reproductive stage. Reducing the As level in rice grains is an important challenge for agriculture. Using a forward genetic approach, we isolated a rice (Oryza sativa) mutant, low arsenic line 3 (las3), whose As levels were decreased in aerial tissues, including grains. The low-As phenotype was not observed in young plants before heading (emergence of the panicle). Genetic analyses revealed that a deficiency in alcohol dehydrogenase (ADH) 2 by mutation is responsible for the phenotype. Among the three rice ADH paralogues, ADH2 was the most efficiently produced in root tissue under anaerobic conditions. In wild-type (WT), silicon and As concentrations in aerial tissues increased with growth. However, the increase was suppressed in las3 during the reproductive stage. Accordingly, the gene expression of two silicate transporters, Lsi1 and Lsi2, was increased in WT around the time of heading, whereas the increase was suppressed in las3. These results indicate that the low-As phenotype in las3 is due to silicate transporter suppression. Measurement of intracellular pH by 31P-nuclear magnetic resonance revealed intracellular acidification of las3 roots under hypoxia, suggesting that silicate transporter suppression in las3 might arise from an intracellular pH decrease, which is known to be facilitated by a deficiency in ADH activity under anaerobic conditions. This study provides valuable insight into reducing As levels in rice grains.


Asunto(s)
Alcohol Deshidrogenasa/genética , Arsénico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Silicatos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/metabolismo
17.
J Biol Chem ; 296: 100077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33187981

RESUMEN

Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis and how mutations in these molecules cause CNM to develop. Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild-type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation, thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related CNM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dinamina II/metabolismo , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Western Blotting , Dinamina II/genética , Células HEK293 , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Miopatías Estructurales Congénitas/genética , Nanotubos/química , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética
18.
FASEB J ; 34(12): 16449-16463, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070431

RESUMEN

Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.


Asunto(s)
Dinamina I/metabolismo , Riñón/metabolismo , Microtúbulos/metabolismo , Podocitos/metabolismo , Animales , Células Cultivadas , Endocitosis/fisiología , Células Epiteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas , Tubulina (Proteína)/metabolismo
19.
Cell Struct Funct ; 45(2): 121-130, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32581155

RESUMEN

The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic ß-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in ß-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse ß-cell line MIN6. Immunofluorescence experiments showed that GluR2/3 appeared as fine dots that were distributed throughout MIN6 cells. Intracellular GluR2/3 co-localized with AP2 and clathrin, markers for clathrin-coated pits and vesicles. Immunoelectron microscopy revealed that GluR2/3 was also localized at plasma membrane. Surface biotinylation and immunofluorescence measurements showed that addition of AMPA caused an approximate 1.8-fold increase in GluR2/3 internalization under low-glucose conditions. Furthermore, internalized GluR2 largely co-localized with EEA1, an early endosome marker. In addition, GluR2/3 co-immunoprecipitated with cortactin, a F-actin binding protein. Depletion of cortactin by RNAi in MIN6 cells altered the intracellular distribution of GluR2/3, suggesting that cortactin is involved in internalization of GluR2/3 in MIN6 cells. Taken together, our results suggest that pancreatic ß-cells adjust the amount of AMPA-type GluR2/3 on the cell surface to regulate the receptive capability of the cell for glutamate.Key words: endocytosis, GluR2, AMPA, cortactin, MIN6.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Receptores AMPA/metabolismo , Línea Celular , Clatrina/genética , Clatrina/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Receptores AMPA/genética
20.
Int J Oncol ; 56(3): 859, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32124951

RESUMEN

Subsequently to the publication of the above article, the authors have realized that the second­listed author, The Mon La, had not been properly credited as one of the co­writers of the paper. Therefore, the Authors' Contributions of the Declarations section of the article should have read as follows: Authors' contributions HY, KTa and TML designed the research and wrote the paper. HY, TA, YM, EO and TT performed mutant protein construction, protein purification and actin bundling experiments. TA and YM performed electron microscopy. EO, TML, KS and KF performed immunofluorescent microscopy, cell migration assay and analyzed data. FYW and KTo identified phosphorylation sites by MALDI­MS. All authors read and approved the final manuscript. The authors apologize to the readership of the Journal for the misinformation in this regard, and for any inconvenience caused. [the original article was published in International Journal of Oncology 54: 550­558, 2019; DOI: 10.3892/ijo.2018.4663].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...