Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cureus ; 16(2): e55224, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38558663

RESUMEN

Introduction Prolonged sitting-induced blood pooling in the lower legs can increase blood pressure through increased sympathetic nerve activity and peripheral vascular resistance, an aspect that has been understudied as a primary outcome. This study compared the effects of prolonged sitting with those of prolonged supination on blood pressure in healthy young men. Methods This randomized crossover study included 16 healthy young men (mean age: 21.6 ± 0.7 years) who were randomly assigned to a three-hour supine (CON) or three-hour sitting (SIT) condition, followed by a washout period of at least one week. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), low-frequency/high-frequency (LF/HF) ratio derived from heart rate variability, and leg circumference were measured at 60, 120, and 180 minutes from baseline. These indices were compared by two-way (time × conditions) analysis of variance (ANOVA). Results In the SIT condition, DBP, MAP, HR, LF/HF ratio, and leg circumference increased significantly over time (P < 0.05) and were significantly higher than those in the CON condition (P < 0.05). However, SBP showed no significant change over time and between conditions. Conclusions The findings indicate the involvement of sympathetic nerve activity and increased peripheral vascular resistance induced by fluid retention in the lower legs with increased DBP and MAP in healthy young men.

2.
Membranes (Basel) ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535274

RESUMEN

In recent years, venovenous extracorporeal membrane oxygenation (VV ECMO) has been used to support patients with severe lung disease. Active use of VV ECMO was also recommended for severe respiratory failure due to COVID-19. However, VV ECMO is also known to cause various complications due to extracorporeal circulation. Although we conducted ECMO research using rats, we have not been able to establish whether double-lumen single-cannulation VV ECMO models in rats have been described previously. The purpose of this study was to establish a simple, stable, and maintainable miniature double-lumen single-canulation VV ECMO model in rats. A double-lumen catheter used as a plain central venous catheter (SMAC plus Seldinger type; Covidien Japan Co., Tokyo, Japan) was passed through the right external jugular vein and advanced into the right atrium as a conduit for venous uptake. The VV ECMO system comprised a roller pump, miniature membrane oxygenator, and polyvinyl chloride tubing line. During VV ECMO, blood pressure and hemodilution rate were maintained at around 80 mmHg and 30%, respectively. Hemoglobin was kept at >9 g/dL, no serious hemolysis was observed, and VV ECMO was maintained without blood transfusion. Oxygenation and removal of carbon dioxide from the blood were confirmed and pH was adequately maintained. This miniature VV ECMO model appears very useful for studying the mechanisms of biological reactions during VV ECMO.

3.
Nucleic Acids Res ; 51(22): 12288-12302, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37944988

RESUMEN

Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo-/-, CTF18-/-, PARP1-/-, CTF18-/-/POLE1exo-/-, PARP1-/-/POLE1exo-/-, and CTF18-/-/PARP1-/- cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo-/- and HDR-deficient BRCA1-/- cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo-/- with BRCA1-/- mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.


Asunto(s)
Proteínas Aviares , ADN Polimerasa II , Replicación del ADN , ADN Polimerasa II/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Animales , Pollos , Proteínas Aviares/metabolismo
4.
Nat Struct Mol Biol ; 30(9): 1286-1294, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592094

RESUMEN

Sister chromatid cohesion, established during replication by the ring-shaped multiprotein complex cohesin, is essential for faithful chromosome segregation. Replisome-associated proteins are required to generate cohesion by two independent pathways. One mediates conversion of cohesins bound to unreplicated DNA ahead of replication forks into cohesive entities behind them, while the second promotes cohesin de novo loading onto newly replicated DNA. The latter process depends on the cohesin loader Scc2 (NIPBL in vertebrates) and the alternative PCNA loader CTF18-RFC. However, the mechanism of de novo cohesin loading during replication is unknown. Here we show that PCNA physically recruits the yeast cohesin loader Scc2 via its C-terminal PCNA-interacting protein motif. Binding to PCNA is crucial, as the scc2-pip mutant deficient in Scc2-PCNA interaction is defective in cohesion when combined with replisome mutants of the cohesin conversion pathway. Importantly, the role of NIPBL recruitment to PCNA for cohesion generation is conserved in vertebrate cells.


Asunto(s)
Cromátides , Segregación Cromosómica , Animales , Antígeno Nuclear de Célula en Proliferación/genética , Cromátides/genética , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética , Cohesinas
5.
J Clin Med ; 12(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37109150

RESUMEN

(1) Background: Extracorporeal circulation (ECC) is indispensable for cardiac surgery. Despite the fact that ECC causes non-physiological damage to blood components, its pathophysiology has not been fully elucidated. In our previous study, we constructed a rat ECC system and observed a systemic inflammatory response during and after blood tests assessing ECC, while the damage per organ localization caused by ECC was not examined. In this study, we used a rat model to assess the gene expression of inflammatory cytokines in major organs during ECC. (2) Methods: The ECC system consisted of a membranous oxygenator, tubing line, and a small roller pump. Rats were divided into a SHAM (which received surgical preparation only, without ECC) group and an ECC group. Proinflammatory cytokines were measured using real-time PCR in major organs after ECC to evaluate local inflammatory responses in the organs. (3) Results: Interleukin (IL)-6 levels were significantly elevated in the ECC group compared to the SHAM group, especially in the heart and lungs. (4) Conclusions: This study suggests that ECC promotes organ damage and the inflammatory response, but the degree of gene expression of proinflammatory cytokines varies from organ to organ, suggesting that it does not uniformly cause organ damage.

6.
Sci Rep ; 13(1): 2133, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747022

RESUMEN

Sister chromatid cohesion (SCC) is mediated by the cohesin complex and its regulatory proteins. To evaluate the involvement of a protein in cohesin regulation, preparations of metaphase chromosome spreads and classifications of chromosome shapes after depletion of the target protein are commonly employed. Although this is a convenient and approved method, the evaluation and classification of each chromosome shape has to be performed manually by researchers. Therefore, this method is time consuming, and the results might be affected by the subjectivity of researchers. In this study, we developed neural network-based image recognition models to judge the positional relationship of sister chromatids, and thereby detect SCC defects. Transfer learning models based on SqueeezeNet or ResNet-18 were trained with more than 600 chromosome images labeled with the type of chromosome, which were classified according to the positional relationship between sister chromatids. The SqueezeNet-based trained model achieved a concordance rate of 73.1% with the sample answers given by a researcher. Importantly, the model successfully detected the SCC defect in the CTF18 deficient cell line, which was used as an SCC-defective model. These results indicate that neural-network-based image recognition models are valuable tools for examining SCC defects in different genetic backgrounds.


Asunto(s)
Proteínas de Ciclo Celular , Cromátides , Cromátides/genética , Cromátides/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
7.
Biomedicines ; 10(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36551829

RESUMEN

Musculoskeletal disease can be a serious condition associated with aging that may lead to fractures and a bedridden state due to decreased motor function. In addition to exercise training to increase muscle mass, increasing muscle function with the intake of functional foods is an effective treatment strategy for musculoskeletal disease. Muscle-specific SOD2-deficient mice (muscle-Sod2-/-) show a severe disturbance in exercise in association with increased mitochondrial reactive oxygen species, as well as mitochondrial dysfunction and muscle damage. In the present study, to develop a therapeutic strategy for musculoskeletal disease, we searched for substances that enhanced motor function among functional compounds by in vivo screening using muscle-Sod2-/- mice as a muscle fatigue model. We administered 96 compounds, including antioxidants, to muscle-Sod2-/- mice and assessed their effects on treadmill performance. Among the administered compounds, gossypin, genistein, kaempferol, taxifolin, fumaric acid, ß-hydroxy-ß-methylbutyrate Ca, and astaxanthin, which are dietary functional food factors, increased forced running time in muscle-Sod2-/- mice. In addition, troglitazone, tempol, trolox, and MnTE-2-PyP, which are antioxidants, also significantly increased the running ability of muscle-Sod2-/- mice. These results suggest that the intake of functional foods with antioxidant activity can improve motor function. Muscle-Sod2-/- mice, as a muscle fatigue model, are suitable for the in vivo screening of functional substances that promote improvements in exercise and muscle performance.

8.
J Nutr Sci Vitaminol (Tokyo) ; 68(1): 39-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228494

RESUMEN

Muscle mass and strength decrease with aging; however, habitual exercise can maintain muscle health. ß-Hydroxy-ß-methyl butyrate calcium (HMB) and black ginger (BG) improve muscle protein metabolism and energy production. Combining these two molecules, which have similar effects, may have a synergistic effect. Senescence-accelerated mouse-prone 8 (SAMP8) is a useful model of muscle aging. Therefore, we explored how the combination of habitual exercise, HMB, and BG affected muscle aging. We used 28-wk-old (28w) SAMP8 mice divided into six groups: 28 wk (28w), 44 wk (44w, Con), exercise (Ex), Ex+BG, Ex+HMB, and Ex+BG+HMB (Ex+Comb). Mice were required to run on a treadmill for 16 wk for 5 d per week. In 28w and 44w mice, grip strength tests and dissection were conducted. Muscle weight was measured, and qPCR and immunoblotting were conducted. Muscle mass and strength were declined in the 44w group. Exercise with HMB or BG alone had no effect, whereas muscle mass and strength were augmented in the Ex+Comb group. Similarly, levels of mitochondrial function- and biogenesis-related genes were increased. Autophagy-related protein (Atg3, 7, 16L1 and Beclin1) were altered in the Ex+Comb group. These results suggest that Ex+Comb affects autophagy. Overall, the combination of habitual exercise and HMB+BG may enhance muscle mass and strength by affecting the mitochondrial and autophagy systems in SAMP8.


Asunto(s)
Zingiber officinale , Animales , Autofagia , Suplementos Dietéticos , Ratones , Mitocondrias , Fuerza Muscular , Músculo Esquelético/fisiología , Valeratos
9.
Genes Dev ; 35(19-20): 1368-1382, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503989

RESUMEN

The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.


Asunto(s)
Cromátides , Proteínas Cromosómicas no Histona , Animales , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Vertebrados/genética , Cohesinas
10.
Nucleic Acids Res ; 49(17): 9809-9820, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34486060

RESUMEN

Transcriptional regulation, a pivotal biological process by which cells adapt to environmental fluctuations, is achieved by the binding of transcription factors to target sequences in a sequence-specific manner. However, how transcription factors recognize the correct target from amongst the numerous candidates in a genome has not been fully elucidated. We here show that, in the fission-yeast fbp1 gene, when transcription factors bind to target sequences in close proximity, their binding is reciprocally stabilized, thereby integrating distinct signal transduction pathways. The fbp1 gene is massively induced upon glucose starvation by the activation of two transcription factors, Atf1 and Rst2, mediated via distinct signal transduction pathways. Atf1 and Rst2 bind to the upstream-activating sequence 1 region, carrying two binding sites located 45 bp apart. Their binding is reciprocally stabilized due to the close proximity of the two target sites, which destabilizes the independent binding of Atf1 or Rst2. Tup11/12 (Tup-family co-repressors) suppress independent binding. These data demonstrate a previously unappreciated mechanism by which two transcription-factor binding sites, in close proximity, integrate two independent-signal pathways, thereby behaving as a hub for signal integration.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Fructosa-Bifosfatasa/genética , Regulación Fúngica de la Expresión Génica , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 1/fisiología , Sitios de Unión , Cromatina/metabolismo , Fructosa-Bifosfatasa/biosíntesis , Fosfoproteínas/fisiología , Unión Proteica , Proteínas Represoras/fisiología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Transducción de Señal , Factores de Transcripción/fisiología
11.
Sci Rep ; 11(1): 18054, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508128

RESUMEN

A trisomy is a type of aneuploidy characterised by an additional chromosome. The additional chromosome theoretically accepts any kind of changes since it is not necessary for cellular proliferation. This advantage led us to apply two chromosome manipulation methods to autosomal trisomy in chicken DT40 cells. We first corrected chromosome 2 trisomy to disomy by employing counter-selection markers. Upon construction of cells carrying markers targeted in one of the trisomic chromosome 2s, cells that have lost markers integrated in chromosome 2 were subsequently selected. The loss of one of the chromosome 2s had little impacts on the proliferative capacity, indicating unsubstantial role of the additional chromosome 2 in DT40 cells. We next tested large-scale truncations of chromosome 2 to make a mini-chromosome for the assessment of chromosome stability by introducing telomere repeat sequences to delete most of p-arm or q-arm of chromosome 2. The obtained cell lines had 0.7 Mb mini-chromosome, and approximately 0.2% of mini-chromosome was lost per cell division in wild-type background while the rate of chromosome loss was significantly increased by the depletion of DDX11, a cohesin regulatory protein. Collectively, our findings propose that trisomic chromosomes are good targets to make unique artificial chromosomes.


Asunto(s)
Aberraciones Cromosómicas , Edición Génica , Ingeniería Genética , Trisomía/genética , Alelos , Animales , Sistemas CRISPR-Cas , Línea Celular , Pollos , ARN Helicasas DEAD-box/genética , Marcación de Gen , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento
12.
PLoS One ; 16(6): e0252587, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34061890

RESUMEN

Living organisms are continuously under threat from a vast array of DNA-damaging agents, which impact genome DNA. DNA replication machinery stalls at damaged template DNA. The stalled replication fork is restarted via bypass replication by translesion DNA-synthesis polymerases, including the Y-family polymerases Polη, Polι, and Polκ, which possess the ability to incorporate nucleotides opposite the damaged template. To investigate the division of labor among these polymerases in vivo, we generated POLη-/-, POLι-/-, POLκ-/-, double knockout (KO), and triple knockout (TKO) mutants in all combinations from human TK6 cells. TKO cells exhibited a hypersensitivity to ultraviolet (UV), cisplatin (CDDP), and methyl methanesulfonate (MMS), confirming the pivotal role played by these polymerases in bypass replication of damaged template DNA. POLη-/- cells, but not POLι-/- or POLκ-/- cells, showed a strong sensitivity to UV and CDDP, while TKO cells showed a slightly higher sensitivity to UV and CDDP than did POLη-/- cells. On the other hand, TKO cells, but not all single KO cells, exhibited a significantly higher sensitivity to MMS than did wild-type cells. Consistently, DNA-fiber assay revealed that Polη plays a crucial role in bypassing lesions caused by UV-mimetic agent 4-nitroquinoline-1-oxide and CDDP, while all three polymerases play complementary roles in bypassing MMS-induced damage. Our findings indicate that the three Y-family polymerases play distinctly different roles in bypass replication, according to the type of DNA damage generated on the template strand.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Línea Celular , Cisplatino/farmacología , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , Técnicas de Inactivación de Genes , Humanos , Metilmetanosulfonato/farmacología , Rayos Ultravioleta , ADN Polimerasa iota
13.
Membranes (Basel) ; 11(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920465

RESUMEN

Systemic inflammatory responses in patients undergoing extracorporeal membrane oxygenation (ECMO) contribute significantly to ECMO-associated morbidity and mortality. In recent years, the number of type 2 diabetes mellitus patients has increased, and the number of these patients undergoing ECMO has also increased. Type 2 diabetes mellitus is a high-risk factor for complications during ECMO. We studied the effects of ECMO on inflammatory response in a diabetic rat ECMO model. Twenty-eight rats were divided into 4 groups: normal SHAM group (normal rats: n = 7), diabetic SHAM group (diabetic rats: n = 7), normal ECMO group (normal rats: n = 7), and diabetic ECMO group (diabetic rats: n = 7). We measured the plasma levels of cytokines, tumor necrosis factor-α, and interleukin-6. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine (Cr), and liver-type fatty acid binding protein (L-FABP) were examined in the rat cardiopulmonary bypass model to ascertain organ damage. In addition, the lung wet-to-dry weight (W/D) ratio was measured as an index of pulmonary tissue edema. A pathologic evaluation of kidneys was conducted by hematoxylin-eosin (HE) and periodic-acid-methenamine-silver (PAM) staining. In the diabetic ECMO group, levels of cytokines, AST, ALT, LDH, and L-FABP increased significantly, reaching a maximum at the end of ECMO in comparison with other groups (p < 0.05). In addition, hematoxylin-eosin and periodic acid-methenamine-silver staining of renal tissues showed marked injury in the ECMO group (normal ECMO and diabetic ECMO groups). Furthermore, when the normal ECMO and diabetic ECMO groups were compared, severe organ injury was seen in the diabetic ECMO group. There was remarkable organ injury in the diabetic ECMO group. These data demonstrate that diabetes enhances proinflammatory cytokine release, renal damage, and pulmonary edema during ECMO in an animal model.

14.
DNA Repair (Amst) ; 100: 103056, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33588156

RESUMEN

The replicative polymerase δ (Polδ), consisting of four subunits, plays a pivotal role in chromosomal replication. Pold4, the smallest subunit of Polδ, is believed to contribute to the regulation of replication by facilitating repair in response to DNA damage. However, that contribution has not been fully elucidated. We here show that Pold4 contributes to the suppression of gene conversion in immunoglobulin-variable (IgV) gene diversification in the chicken DT40 lymphocyte cell line, where gene conversion diversifies the IgV gene through intragenic homologous recombination (HR) between diverged pseudo-V segments. IgV gene conversion is initiated by activation-induced cytidine deaminase-mediated uracil formation in the IgV gene, which in turn converts into an abasic site, leading to replication arrest. POLD4-/- cells exhibited an increased rate of IgV gene conversion. Moreover, the gene-conversion tract was lengthened and the usage of pseudo-V segments was altered, showing a preference, to use the diverged sequence as a donor in POLD4-/- cells. These data suggest that Pold4 is involved in the regulation of HR-mediated gene conversion in IgV diversification. By contrast, the rate in HR-mediated, sister-chromatid exchange and gene-targeting induced by an I-SceI endonclease-mediated DNA double-strand break exhibited by POLD4-/- cells was indistinguishable from that by wild-type cells. These findings indicate that the functionality of general HR is preserved in POLD4-/- cells. In conclusion, Pold4 is involved in the suppression of IgV-gene conversion without affecting the general functionality of HR.


Asunto(s)
Pollos/metabolismo , Daño del ADN , Conversión Génica , Recombinación Homóloga , Región Variable de Inmunoglobulina/metabolismo , Animales , Línea Celular , Pollos/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Región Variable de Inmunoglobulina/genética
15.
Geriatrics (Basel) ; 5(3)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916898

RESUMEN

Loss of muscle mass and strength are progressing with aging. Exercise is a beneficial method to prevent physical dysfunction, and habitual exercise can improve the muscle quality. Therefore, we evaluated the effects of long-term habitual exercise's impact on sarcopenia utilizing the senescence-accelerated mice prone8 (SAMP8) model. Notably, 27 w SAMP8 were used in this study. Mice were classified into 28 (28 w) and 44 weeks old. The 44-week group was divided into the sedentary group (44 w) and a group exercising for 16 weeks (44 w + Ex). The 44 w + Ex performed habitual exercise from 28 to 44 weeks. Additionally, grip strength tests were performed with mice aged 28 and 44 weeks. Muscles were harvested and measured muscle weight at 44 w. Gastrocnemius decreased in 44 w, but was unchanged in 44 w + Ex. There was a trend for lower muscle grip strength in the 44 w group, but there was no change in 44 w + Ex. The phosphorylation levels of Akt and p70S6K as a protein synthesis marker were decreased in 44 w. Cytochrome c oxidase subunit IV (CoxIV) mRNA and protein levels decreased in 44 w. These results suggested that long-term habitual exercise attenuates muscle mass and strength decline, possibly through maintenance of muscle protein synthesis and mitochondrial maintenance.

16.
Rev Sci Instrum ; 91(3): 034702, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259960

RESUMEN

Zinc oxide (ZnO) materials are fine ceramics with non-linear electrical properties. Their non-linear electrical properties appear from a double Schottky barrier formed in the grain boundaries (GBs). These microparticles are not easy to measure directly with electrical microprobes due to their small size (i.e., 50-100 µm). We developed a direct measurement process with two Cu cables of small diameter. In this paper, we have developed an amplified method of the previous measurement system, which can measure not only one ZnO microvaristor directly but also a group of microvaristors in a series connection. The I-V characteristics of the microvaristors were measured with the modified method, and we found non-linear properties in each particle while measuring I-V characteristics. Their fine structures were also investigated, and the non-linear I-V characteristics showed a direct relationship with the number of the GBs of the samples. Moreover, varistor voltage was calculated for a single GB for the I-V measurements for ZnO microvaristors connected in a series connection.

17.
EMBO Rep ; 21(2): e48222, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31867888

RESUMEN

SMC5/6 function in genome integrity remains elusive. Here, we show that SMC5 dysfunction in avian DT40 B cells causes mitotic delay and hypersensitivity toward DNA intra- and inter-strand crosslinkers (ICLs), with smc5 mutants being epistatic to FANCC and FANCM mutations affecting the Fanconi anemia (FA) pathway. Mutations in the checkpoint clamp loader RAD17 and the DNA helicase DDX11, acting in an FA-like pathway, do not aggravate the damage sensitivity caused by SMC5 dysfunction in DT40 cells. SMC5/6 knockdown in HeLa cells causes MMC sensitivity, increases nuclear bridges, micronuclei, and mitotic catastrophes in a manner similar and non-additive to FANCD2 knockdown. In both DT40 and HeLa systems, SMC5/6 deficiency does not affect FANCD2 ubiquitylation and, unlike FANCD2 depletion, RAD51 focus formation. SMC5/6 components further physically interact with FANCD2-I in human cells. Altogether, our data suggest that SMC5/6 functions jointly with the FA pathway to support genome integrity and DNA repair and may be implicated in FA or FA-related human disorders.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Anemia de Fanconi , ARN Helicasas DEAD-box , Daño del ADN/genética , ADN Helicasas/genética , Reparación del ADN/genética , Anemia de Fanconi/genética , Inestabilidad Genómica , Células HeLa , Humanos
18.
Sci Rep ; 9(1): 299, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670704

RESUMEN

Long noncoding RNAs (lncRNAs) transcribed across gene promoters have been detected. These regulate transcription by mechanisms that have not been fully elucidated. We herein show that the chromatin configuration is altered into an accessible state within 290 bp downstream from the initiation site of metabolic-stress-induced lncRNAs (mlonRNAs) in the promoter of the fission yeast fbp1 gene, whose transcription is massively induced upon glucose starvation. Chromatin upstream from fbp1 is progressively altered into an open configuration, as a cascade of transcription of three overlapping mlonRNA species (-a, -b and -c in order) occurs with transcriptional initiation sites progressing 5' to 3' upstream of the fbp1 promoter. Initiation of the shortest mlonRNA (mlonRNA-c) induces chromatin remodeling around a transcription factor-binding site and subsequent massive induction of fbp1. We identify the cis-element required for mlonRNA-c initiation, and by changing the distance between mlonRNA-initiation site and the transcription factor-binding site, we show that mlonRNA-initiation effectively induces chromatin remodeling in a limited distance within 290 bp. These results indicate that mlonRNAs are transcribed across the fbp1 promoter as a short-range inducer for local chromatin alterations, and suggest that strict chromatin modulation is archived via stepwise mlonRNA-initiations.


Asunto(s)
Ensamble y Desensamble de Cromatina , Fructosa-Bifosfatasa/genética , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , Schizosaccharomyces/genética , Transcripción Genética , Sitios de Unión , Glucosa/deficiencia , Proteínas de Schizosaccharomyces pombe/genética , Estrés Fisiológico/genética , Factores de Transcripción
19.
Genes (Basel) ; 9(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544644

RESUMEN

DNA replication is an essential biochemical reaction in dividing cells that frequently stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs. These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review, we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed light on DDT mode usage in vertebrate cells and tolerance of abasic sites.

20.
Proc Natl Acad Sci U S A ; 115(33): 8412-8417, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061412

RESUMEN

Warsaw breakage syndrome, a developmental disorder caused by mutations in the DDX11/ChlR1 helicase, shows cellular features of genome instability similar to Fanconi anemia (FA). Here we report that DDX11-deficient avian DT40 cells exhibit interstrand crosslink (ICL)-induced chromatid breakage, with DDX11 functioning as backup for the FA pathway in regard to ICL repair. Importantly, we establish that DDX11 acts jointly with the 9-1-1 checkpoint clamp and its loader, RAD17, primarily in a postreplicative fashion, to promote homologous recombination repair of bulky lesions, but is not required for intra-S checkpoint activation or efficient fork progression. Notably, we find that DDX11 also promotes diversification of the chicken Ig-variable gene, a process triggered by programmed abasic sites, by facilitating both hypermutation and homeologous recombination-mediated gene conversion. Altogether, our results uncover that DDX11 orchestrates jointly with 9-1-1 and its loader, RAD17, DNA damage tolerance at sites of bulky lesions, and endogenous abasic sites. These functions may explain the essential roles of DDX11 and its similarity with 9-1-1 during development.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , ARN Helicasas DEAD-box/fisiología , ADN Helicasas/fisiología , Reparación del ADN , Replicación del ADN , Animales , Pollos , Anemia de Fanconi/genética , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Hipermutación Somática de Inmunoglobulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...