Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Radiol Case Rep ; 18(4): 1633-1636, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36865621

RESUMEN

The reversed halo sign (RHS) has been associated with various pulmonary diseases. We report a rare case of pulmonary mucosa-associated lymphoid tissue lymphoma forming a RHS from a ground-glass opacity (GGO). A 73-year-old man was followed-up for the GGO on his computed tomography images, which gradually extended peripherally. During the fourth year of follow-up, the GGO significantly evolved into a well-demarcated, oval lesion, with interlobular and intralobular septal thickenings, and multiple air spaces were surrounded by a well-defined thin consolidative rim, called the RHS. A pathologic study of the specimen via transbronchoscopic biopsy revealed pulmonary mucosa-associated lymphoid tissue lymphoma.

2.
Anat Rec (Hoboken) ; 299(9): 1203-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27343022

RESUMEN

To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Aletas de Animales/anatomía & histología , Evolución Biológica , Peces/anatomía & histología , Fósiles , Músculos Pectorales/anatomía & histología , Aletas de Animales/diagnóstico por imagen , Aletas de Animales/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Peces/fisiología , Músculos Pectorales/diagnóstico por imagen , Músculos Pectorales/fisiología , Filogenia , Tomografía Computarizada por Rayos X
3.
Genome Res ; 23(10): 1740-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878157

RESUMEN

Coelacanths are known as "living fossils," as they show remarkable morphological resemblance to the fossil record and belong to the most primitive lineage of living Sarcopterygii (lobe-finned fishes and tetrapods). Coelacanths may be key to elucidating the tempo and mode of evolution from fish to tetrapods. Here, we report the genome sequences of five coelacanths, including four Latimeria chalumnae individuals (three specimens from Tanzania and one from Comoros) and one L. menadoensis individual from Indonesia. These sequences cover two African breeding populations and two known extant coelacanth species. The genome is ∼2.74 Gbp and contains a high proportion (∼60%) of repetitive elements. The genetic diversity among the individuals was extremely low, suggesting a small population size and/or a slow rate of evolution. We found a substantial number of genes that encode olfactory and pheromone receptors with features characteristic of tetrapod receptors for the detection of airborne ligands. We also found that limb enhancers of bmp7 and gli3, both of which are essential for limb formation, are conserved between coelacanth and tetrapods, but not ray-finned fishes. We expect that some tetrapod-like genes may have existed early in the evolution of primitive Sarcopterygii and were later co-opted to adapt to terrestrial environments. These coelacanth genomes will provide a cornerstone for studies to elucidate how ancestral aquatic vertebrates evolved into terrestrial animals.


Asunto(s)
Adaptación Biológica , Evolución Molecular , Peces/clasificación , Peces/genética , Genoma , África , Animales , Organismos Acuáticos/genética , Secuencia de Bases , Biodiversidad , Proteína Morfogenética Ósea 7/genética , Extremidades/crecimiento & desarrollo , Especiación Genética , Variación Genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Filogenia , Receptores Odorantes/genética , Receptores de Feromonas/genética , Análisis de Secuencia de ADN , Vertebrados/clasificación , Vertebrados/genética , Agua
4.
Proc Natl Acad Sci U S A ; 108(44): 18009-13, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025696

RESUMEN

Since the sensational discovery of a living coelacanth off the east coast of South Africa, the geographic distribution of viable coelacanth populations has been a subject of debate. In the past, the coelacanths off the African mainland were thought to be strays from the Comoros because most coelacanths captured were caught in the waters surrounding the Comoros archipelagos. However, in recent years, a large number of coelacanths were captured off the coast of Tanzania, including nine living specimens observed in a remotely operated vehicles survey. Thus, it is possible that there is a reproducing population inhabiting waters off the Tanzania coast. We have sequenced the complete mitochondrial genomes of 21 Tanzanian and 2 Comoran coelacanths and analyzed these sequences together with two additional full mitochondrial genomes and 47 d-loop sequences from the literature. We found that the coelacanth population off the northern Tanzanian coast is genetically differentiated from those of the southern Tanzania coast and the Comoros, whereas no significant genetic differentiation occurs between the latter two localities. The differentiation between the northern and southern Tanzanian coast populations is consistent with the hypothesis that the existence of northward-flowing ocean current along the Tanzanian coast may reduce or prevent gene flow from the northern to the southern population. Finally, we estimated that the population localized to the southern Tanzanian coast and the Comoros diverged from other coelacanths at least 200,000 y ago. These results indicate that the coelacanths off the northern Tanzania coast are not strays but a genetically distinct group. Our study provides important information for the conservation of this threatened "living fossil."


Asunto(s)
Peces/genética , Animales , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA