Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Commun Med (Lond) ; 4(1): 67, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582941

RESUMEN

BACKGROUND: Genomic surveillance is crucial for monitoring malaria transmission and understanding parasite adaptation to interventions. Zambia lacks prior nationwide efforts in malaria genomic surveillance among African countries. METHODS: We conducted genomic surveillance of Plasmodium falciparum parasites from the 2018 Malaria Indicator Survey in Zambia, a nationally representative household survey of children under five years of age. We whole-genome sequenced and analyzed 241 P. falciparum genomes from regions with varying levels of malaria transmission across Zambia and estimated genetic metrics that are informative about transmission intensity, genetic relatedness between parasites, and selection. RESULTS: We provide genomic evidence of widespread within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in Zambia. Our analysis reveals country-level clustering of parasites from Zambia and neighboring regions, with distinct separation in West Africa. Within Zambia, identity by descent (IBD) relatedness analysis uncovers local spatial clustering and rare cases of long-distance sharing of closely related parasite pairs. Genomic regions with large shared IBD segments and strong positive selection signatures implicate genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Furthermore, differences in selection signatures, including drug resistance loci, are observed between eastern and western Zambian parasite populations, suggesting variable transmission intensity and ongoing drug pressure. CONCLUSIONS: Our findings enhance our understanding of nationwide P. falciparum transmission in Zambia, establishing a baseline for analyzing parasite genetic metrics as they vary over time and space. These insights highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.


Malaria is caused by a parasite that is spread to humans via mosquito bites. It is a leading cause of death in children under five years old in sub-Saharan Africa. Analysis of the malaria parasite's complete set of DNA (its genome) can help us to understand transmission of the disease and how this changes in response to different strategies to control the disease. We analyzed the genomes of malaria parasites from children across Zambia. Our study revealed that 77% of children harbored multiple parasite strains, which suggests that local transmission (transmission between people within the same local area) is high. Genetic evidence for long-distance transmission was rarer. Furthermore, our findings suggest parasites are evolving in response to antimalarial drugs. Our study enhances our understanding of malaria dynamics in Zambia and may help to inform strategies for improved surveillance and control.

2.
Afr J Lab Med ; 13(1): 2268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629088

RESUMEN

Background: Clinicians rely on local antimicrobial resistance pattern data to guide empiric treatment for seriously ill patients when culture and antimicrobial susceptibility testing results are not immediately available. Objective: This study aimed to analyse 5-year trends in antimicrobial resistance profiles of Escherichia coli and Klebsiella pneumoniae isolates. Methods: Bacteriology reports from 2017 to 2021 at the Ethiopian Public Health Institute were analysed retrospectively. Isolates were identified using either the VITEK 2 Compact system, the BD Phoenix M50 instrument, or conventional biochemical tests. Antimicrobial susceptibility testing was conducted using either the Kirby-Bauer disk diffusion method or the VITEK 2 Compact system and BD Phoenix M50 systems available at the time of testing. The Cochran Armitage trend test was employed to test the significance of antimicrobial resistance trends over time. P-values less than 0.05 were considered statistically significant. Results: Of the 5382 bacteriology reports examined, 458 (9%) were on E. coli and 266 (5%) were on K. pneumoniae. Both K. pneumoniae (88%) and E. coli (65%) demonstrated high resistance to extended-spectrum cephalosporins. However, both K. pneumoniae (14%) and E. coli (5%) showed lower rates of resistance to carbapenems compared to other antimicrobials. In K. pneumoniae, resistance to carbapenems (from 0% to 38%; p < 0.001) and ciprofloxacin (from 41% to 90%; p < 0.001) increased significantly between 2017 and 2021. Conclusion: Both organisms showed very high resistance to broad-spectrum antibiotics. Additionally, K. pneumoniae demonstrated a statistically significant rise in ciprofloxacin and carbapenem resistance. What this study adds: This study emphasises the significance of regular reporting of local antimicrobial resistance patterns as this information can guide appropriate empiric therapy and efforts to address antimicrobial resistance issues.

3.
Malar J ; 23(1): 79, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491359

RESUMEN

BACKGROUND: Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS: Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS: Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION: Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Variación Genética , Tanzanía , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Genotipo , Repeticiones de Microsatélite , Antígenos de Protozoos/genética
4.
medRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352311

RESUMEN

Background: Artemisinin-based combination therapies (ACTs) are the recommended antimalarial drugs for the treatment of uncomplicated malaria. The recent emergence of artemisinin partial resistance (ART-R) in Rwanda, Uganda and Eritrea is of great concern. In Tanzania, a nationwide molecular malaria surveillance in 2021 showed a high prevalence of the Kelch13 (K13) 561H mutation in Plasmodium falciparum from the north-western region, close to the border with Rwanda and Uganda. This study was conducted in 2022 to evaluate the efficacy of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) for the treatment of uncomplicated falciparum malaria and to confirm the presence of ART-R in Tanzania. Methods: This single-arm study evaluated the efficacy of AL and ASAQ in eligible children aged six months to 10 years at Bukangara Dispensary in Karagwe District, Kagera Region. Clinical and parasitological responses were monitored for 28 days according to standard WHO protocol. Mutations in K13 gene and extended haplotypes with these mutations were analysed using Sanger and whole genome sequencing data, respectively. Findings: 176 children (88 in each AL and ASAQ group) were enrolled and all achieved the defined outcomes. PCR-corrected adequate clinical and parasitological response (ACPR) was 98.3% (95% CI: 90.8-100) and 100.0% (95% CI: 95.8-100) for AL and ASAQ, respectively. Parasitaemia on day 3 was observed in 11/88 (12.5%) and 17/88 (19.3%) in the AL and ASAQ groups, respectively. The half-life of parasitaemia was significantly higher (>6.5 hrs) in patients with parasitaemia on day 3 and/or mutations in K13 gene at enrolment. Most patients with parasitaemia on day 3 (8/11 = 72.7% in the AL group and 10/17 = 58.8% in the ASAQ group) had 561H mutation at enrolment. The parasites with K13 mutations were not similar to those from south-east Asia and Rwanda, but had the same core haplotype of a new 561H haplotype reported in Kagera in 2021. Interpretation: These findings confirm the presence of ART-R in Tanzania. A context-specific strategy to respond to artemisinin partial resistance is urgently needed. Although both AL and ASAQ showed high efficacy, increased vigilance for reduced efficacy of these ACTs and detection of ART-R in other parts of the country is critical.

5.
medRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370674

RESUMEN

Genomic surveillance plays a critical role in monitoring malaria transmission and understanding how the parasite adapts in response to interventions. We conducted genomic surveillance of malaria by sequencing 241 Plasmodium falciparum genomes from regions with varying levels of malaria transmission across Zambia. We found genomic evidence of high levels of within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in the country. We identified country-level clustering of parasites from Zambia and neighboring countries, and distinct clustering of parasites from West Africa. Within Zambia, our identity by descent (IBD) relatedness analysis uncovered spatial clustering of closely related parasite pairs at the local level and rare cases of long-distance sharing. Genomic regions with large shared IBD segments and strong positive selection signatures identified genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Together, our findings enhance our understanding of P. falciparum transmission nationwide in Zambia and highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.

6.
Malar J ; 23(1): 34, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273360

RESUMEN

The emergence and spread of artemisinin partial resistance in East and Horn of Africa is alarming. However, artemisinin-based combination therapy (ACT) generally remains efficacious for the treatment of falciparum malaria. The emergence of partial artemisinin resistance does not currently meet the criteria to initiate change on treatment guidelines nor affect ACT routine procurement and distribution. It is high time for scientists and transitional researchers to be more critical and vigilant on further changes so that national programmes will be able to make informed decisions as well as remain alert and prepared for any change that may be required in the future.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Malaria Falciparum/tratamiento farmacológico , África , África Oriental
7.
medRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37986920

RESUMEN

Background: Emergence of artemisinin partial resistance (ART-R) in Plasmodium falciparum is a growing threat to the efficacy of artemisinin combination therapies (ACT) and the efforts for malaria elimination. The emergence of Plasmodium falciparum Kelch13 (K13) R561H in Rwanda raised concern about the impact in neighboring Tanzania. In addition, regional concern over resistance affecting sulfadoxine-pyrimethamine (SP), which is used for chemoprevention strategies, is high. Methods: To enhance longitudinal monitoring, the Molecular Surveillance of Malaria in Tanzania (MSMT) project was launched in 2020 with the goal of assessing and mapping antimalarial resistance. Community and clinic samples were assessed for resistance polymorphisms using a molecular inversion probe platform. Findings: Genotyping of 6,278 samples collected countrywide in 2021 revealed a focus of K13 561H mutants in northwestern Tanzania (Kagera) with prevalence of 7.7% (50/649). A small number of 561H mutants (about 1%) were found as far as 800 km away in Tabora, Manyara, and Njombe. Genomic analysis suggests some of these parasites are highly related to isolates collected in Rwanda in 2015, supporting regional spread of 561H. However, a novel haplotype was also observed, likely indicating a second origin in the region. Other validated resistance polymorphisms (622I and 675V) were also identified. A focus of high sulfadoxine-pyrimethamine drug resistance was also identified in Kagera with a prevalence of dihydrofolate reductase 164L of 15% (80/526). Interpretation: These findings demonstrate the K13 561H mutation is entrenched in the region and that multiple origins of ART-R, similar as to what was seen in Southeast Asia, have occurred. Mutations associated with high levels of SP resistance are increasing. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Funding: This study was funded by the Bill and Melinda Gates Foundation and the National Institutes of Health.

8.
Nat Microbiol ; 8(10): 1911-1919, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640962

RESUMEN

Diagnosis and treatment of Plasmodium falciparum infections are required for effective malaria control and are pre-requisites for malaria elimination efforts; hence we need to monitor emergence, evolution and spread of drug- and diagnostics-resistant parasites. We deep sequenced key drug-resistance mutations and 1,832 SNPs in the parasite genomes of 609 malaria cases collected during a diagnostic-resistance surveillance study in Ethiopia. We found that 8.0% (95% CI 7.0-9.0) of malaria cases were caused by P. falciparum carrying the candidate artemisinin partial-resistance kelch13 (K13) 622I mutation, which was less common in diagnostic-resistant parasites mediated by histidine-rich proteins 2 and 3 (pfhrp2/3) deletions than in wild-type parasites (P = 0.03). Identity-by-descent analyses showed that K13 622I parasites were significantly more related to each other than to wild type (P < 0.001), consistent with recent expansion and spread of this mutation. Pfhrp2/3-deleted parasites were also highly related, with evidence of clonal transmissions at the district level. Of concern, 8.2% of K13 622I parasites also carried the pfhrp2/3 deletions. Close monitoring of the spread of combined drug- and diagnostic-resistant parasites is needed.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum/metabolismo , Antimaláricos/farmacología , Etiopía/epidemiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Artemisininas/farmacología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Falciparum/tratamiento farmacológico
9.
Malar J ; 22(1): 208, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420265

RESUMEN

BACKGROUND: Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS: In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS: The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION: Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Zambia/epidemiología , Análisis Espacial , Genómica
10.
Vaccine ; 40(46): 6631-6639, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36210251

RESUMEN

Rotavirus vaccination has been shown to reduce rotavirus burden in many countries, but the long-term magnitude of vaccine impacts is unclear, particularly in low-income countries. We use a transmission model to estimate the long-term impact of rotavirus vaccination on deaths and disability adjusted life years (DALYs) from 2006 to 2034 for 112 low- and middle-income countries. We also explore the predicted effectiveness of a one- vs two- dose series and the relative contribution of direct vs indirect effects to overall impacts. To validate the model, we compare predicted percent reductions in severe rotavirus cases with the percent reduction in rotavirus positivity among gastroenteritis hospital admissions for 10 countries with pre- and post-vaccine introduction data. We estimate that vaccination would reduce deaths from rotavirus by 49.1 % (95 % UI: 46.6-54.3 %) by 2034 under realistic coverage scenarios, compared to a scenario without vaccination. Most of this benefit is due to direct benefit to vaccinated individuals (explaining 69-97 % of the overall impact), but indirect protection also appears to enhance impacts. We find that a one-dose schedule would only be about 57 % as effective as a two-dose schedule 12 years after vaccine introduction. Our model closely reproduced observed reductions in rotavirus positivity in the first few years after vaccine introduction in select countries. Rotavirus vaccination is likely to have a substantial impact on rotavirus gastroenteritis and its mortality burden. To sustain this benefit, the complete series of doses is needed.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Lactante , Infecciones por Rotavirus/prevención & control , Gastroenteritis/prevención & control , Vacunación , Análisis Costo-Beneficio
11.
Open Forum Infect Dis ; 9(7): ofac268, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818365

RESUMEN

Background: Using a combination of data from routine surveillance, genomic sequencing, and phylogeographic analysis, we tracked the spread and introduction events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants focusing on a large university community. Methods: Here, we sequenced and analyzed 677 high-quality SARS-CoV-2 genomes from positive RNA samples collected from Purdue University students, faculty, and staff who tested positive for the virus between January 2021 and May 2021, comprising an average of 32% of weekly cases across the time frame. Results: Our analysis of circulating SARS-CoV-2 variants over time revealed periods when variants of concern (VOC) Alpha (B.1.1.7) and Iota (B.1.526) reached rapid dominance and documented that VOC Gamma (P.1) was increasing in frequency as campus surveillance was ending. Phylodynamic analysis of Gamma genomes from campus alongside a subsampling of >20 000 previously published P.1 genomes revealed 10 independent introductions of this variant into the Purdue community, predominantly from elsewhere in the United States, with introductions from within the state of Indiana and from Illinois, and possibly Washington and New York, suggesting a degree of domestic spread. Conclusions: We conclude that a robust and sustained active and passive surveillance program coupled with genomic sequencing during a pandemic offers important insights into the dynamics of pathogen arrival and spread in a campus community and can help guide mitigation measures.

12.
J Appl Stat ; 49(8): 2137-2156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813082

RESUMEN

Varying coefficient models (VCMs) are commonly used for their high degree of flexibility in modeling complex systems. Many applications in fisheries utilize VCMs to capture spatial variation in populations of marine fishes. All of these applications use the penalized least squares method for estimation. However, this approach is known to be sensitive to non-normal distributions and outliers, a common feature of ecological data. Robust estimation methods are more appropriate for handling noisy and non-normal data. We present the application of a signed-rank-based procedure for obtaining robust estimates in VCMs on a fisheries dataset from the North Pacific Ocean. We demonstrates that the signed-rank-based estimation method provides better fit and improved prediction in comparison to the classical likelihood VCM fits in both simulations and the real data application, particularly when the distributions are non-normal and may be misspecified. Rank-based estimation of VCMs is therefore valuable for modeling ecological data and obtaining useful inferences where non-normality and outliers are common.

13.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22271521

RESUMEN

Using a combination of data from routine surveillance, genomic sequencing, and phylogeographic analysis we tracked the spread and introduction events of SARS-CoV-2 variants focusing on a large university community. Here, we sequenced and analyzed 677 high-quality SARS-CoV-2 genomes from positive RNA samples collected from Purdue University students, faculty, and staff who tested positive for the virus between January 2021 and May 2021, comprising an average of 32% of weekly cases across the time frame. Our analysis of circulating SARS-CoV-2 variants over time revealed periods when Variant of Concern (VOC) Alpha (B.1.1.7) and Iota (B.1.526) reached rapid dominance and documented that VOC Gamma (P.1) was increasing in frequency as campus surveillance was ending. Phylodynamic analysis of Gamma genomes from campus alongside a subsampling of >20,000 previously published P.1 genomes revealed ten independent introductions of this variant into the Purdue community, predominantly from elsewhere in the United States, with introductions from within the state of Indiana and from Illinois, and possibly Washington and New York, suggesting a degree of domestic spread. We conclude that a robust and sustained active and passive surveillance program coupled with genomic sequencing during a pandemic offers important insights into the dynamics of pathogen arrival and spread in a campus community and can help guide mitigation measures.

14.
Malar J ; 20(1): 386, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583692

RESUMEN

BACKGROUND: Zambia continues to advance on the path to elimination with significant reductions in malaria morbidity and mortality. Crucial components that have contributed to progress thus far and are necessary for achieving the national malaria elimination goals include properly identifying and treating all malaria cases through accurate diagnosis. This study sought to compare and assess the diagnostic performance of Rapid Diagnostic Tests (RDT) and Light Microscopy (LM) with photo-induced electron transfer polymerase chain reaction (PET-PCR) as the gold standard using 2018 Malaria Indicator Survey (MIS) data across Zambia to better understand diagnostic accuracy metrics and how these vary across a transmission gradient. METHODS: Cross-sectional samples collected in a nationally representative survey from 7 provinces in Zambia were tested for the presence of malaria parasites by light microscopy (LM), rapid diagnostic test (RDT) and the gold standard PET-PCR. Diagnostic performance was assessed including sensitivity, specificity, negative- and positive-predictive values across a wide malaria transmission spectrum. Diagnostic accuracy metrics were measured, and statistically significant differences were calculated between test methods for different outcome variables. RESULTS: From the individuals included in the MIS, the overall prevalence of Plasmodium falciparum malaria was 32.9% by RDT, 19.4% by LM, and 23.2% by PET-PCR. Herein, RDT and LM diagnostic performance was compared against gold standard PET-PCR with LM displaying a higher diagnostic accuracy than RDTs (91.3% vs. 84.6% respectively) across the transmission spectrum in Zambia. However, the performance of both diagnostics was significantly reduced in low parasitaemia samples. Consistent with previous studies, RDT diagnostic accuracy was predominantly affected by a high rate of false positives. CONCLUSIONS: RDTs and LM both perform well across a range of transmission intensities within their respective target applications, i.e., in the community, for the former, where ease of use and speed of result is critical, and at the health facility, for the latter, where accuracy is prioritized. However, the performance of both diagnostic methods is adversely affected by low parasitaemia infections. As Zambia moves towards elimination more sensitive tools may be required to identify the last cases.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria Falciparum/epidemiología , Microscopía/estadística & datos numéricos , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa/estadística & datos numéricos , Niño , Preescolar , Estudios Transversales , Humanos , Lactante , Recién Nacido , Malaria Falciparum/parasitología , Parasitemia/epidemiología , Parasitemia/parasitología , Valor Predictivo de las Pruebas , Prevalencia , Sensibilidad y Especificidad , Zambia/epidemiología
15.
Malar J ; 19(1): 375, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081815

RESUMEN

BACKGROUND: Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS: Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS: From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS: High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Genética de Población/instrumentación , Repeticiones de Microsatélite , Plasmodium vivax/genética , Polimorfismo de Nucleótido Simple , Humanos , Malaria Vivax/parasitología
16.
Mol Ecol ; 29(23): 4525-4541, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32985031

RESUMEN

Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs  = 7.1-6.4, HE  = 0.77-0.71; Madang: Rs  = 8.2-6.1, HE  = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs  = 11.4-9.3, HE  = 0.83-0.80; Madang: Rs  = 12.2-14.5, HE  = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.


Asunto(s)
Malaria Falciparum , Malaria , Variación Genética , Humanos , Malaria Falciparum/epidemiología , Repeticiones de Microsatélite , Papúa Nueva Guinea/epidemiología , Plasmodium falciparum/genética , Plasmodium vivax/genética
17.
Animal ; 14(7): 1362-1370, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32100664

RESUMEN

Community-based breeding programs (CBBPs) for small ruminants have been suggested as alternatives to centralised, government-controlled breeding schemes which have been implemented in many developing countries. An innovative methodological framework on how to design, implement and sustain CBBPs was tested in three sites in Ethiopia: Bonga, Horro and Menz. In these CBBPs, the main selection trait identified through participatory approaches was 6-month weight in all three sites. In Horro and Bonga, where resources such as feed and water permitted larger litter sizes, twinning rate was included. Ten-year (2009 to 2018) performance data from the breeding programs were analysed using Average Information Restricted Maximum Likelihood method (AI-REML). Additionally, the socioeconomic impact of CBBPs was assessed. Results indicated that 6-month weight increased over the years in all breeds. In Bonga, the average increase was 0.21 ± 0.018 kg/year, followed by 0.18 ± 0.007 and 0.11 ± 0.003 kg/year in Horro and Menz, respectively. This was quite substantial in an on-farm situation. The birth weight of lambs did not improve over the years in Bonga and Horro sheep but significant increases occurred in Menz. Considering that there was no direct selection on birth weight in the community flock, the increased weights observed in Menz could be due to correlated responses, but this was not the case in Bonga and Horro. The genetic trend for prolificacy over the years in both Bonga and Horro flocks was positive and significant (P < 0.01). This increase in litter size, combined with the increased 6-month body weight, increased income by 20% and farm-level meat consumption from slaughter of one sheep per year to three. The results show that CBBPs are technically feasible, result in measurable genetic gains in performance traits and impact the livelihoods of farmers.


Asunto(s)
Cruzamiento , Ovinos , Animales , Peso Corporal , Etiopía , Femenino , Tamaño de la Camada/genética , Masculino , Fenotipo , Embarazo , Ovinos/genética , Factores Socioeconómicos
19.
Afr J Lab Med ; 7(2): 770, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30568898

RESUMEN

INTRODUCTION: Antimicrobial resistance (AMR) poses a global threat. High levels of AMR to commonly used antibiotics have been reported in East Africa. A situation analysis of AMR in Ethiopia also indicated high resistance levels. To prevent and contain AMR, Ethiopia established a national surveillance network. OBJECTIVES: This article describes the steps taken to prioritise AMR and establish the National Antimicrobial Resistance Surveillance System in Ethiopia, as well as present the challenges and lessons learned through implementation. METHODS: In April 2017, Ethiopia had developed and approved the National AMR Surveillance Plan for laboratory-based AMR surveillance. The World Health Organization recommendations and Ethiopias's current microbiology capacity were used to prioritise organisms for reporting. The surveillance system is comprised of a network linking the national reference laboratory with surveillance sentinel sites. Roll-out of the AMR surveillance network occurred in three phases in order to ensure successful implementation. RESULTS: Electronic capture and transmission of data, supply chain for the microbiology laboratory and communication problems were challenges observed after implementation started. Support from Ethiopian Public Health Institute focal persons for data entry, regular scheduled communication establishment and procurement of supplies by the American Society for Microbiology were some of the measures taken to address the challenges. CONCLUSION: Ethiopia has demonstrated that setting up AMR surveillance in lower resource settings is possible with strong leadership and stakeholder engagement.

20.
Infect Genet Evol ; 58: 83-95, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29313805

RESUMEN

The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG.


Asunto(s)
Variación Genética , Genética de Población , Migración Humana , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Plasmodium vivax/genética , Alelos , Frecuencia de los Genes , Genoma de Protozoos , Genotipo , Geografía Médica , Haplotipos , Humanos , Desequilibrio de Ligamiento , Malaria Vivax/transmisión , Repeticiones de Microsatélite , Papúa Nueva Guinea , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...