Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 348: 122683, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702027

RESUMEN

Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.


Asunto(s)
Vectores Genéticos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Animales , Linfocitos T/inmunología , Terapia Genética/métodos , Neoplasias/terapia
2.
Pathol Res Pract ; 254: 155119, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309019

RESUMEN

According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Neoplasias/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...