Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 18(6): e1010226, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666719

RESUMEN

GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development.


Asunto(s)
Interneuronas , Neuronas , Cuerpo Estriado , Interneuronas/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología
2.
Phys Rev E ; 99(5-1): 052902, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31212553

RESUMEN

We report on experiments investigating the dynamics of a slider that is pulled by a spring across a granular medium consisting of a vertical layer of photoelastic disks. The motion proceeds through a sequence of discrete events, analogous to seismic shocks, in which elastic energy stored in the spring is rapidly released. We measure the statistics of several properties of the individual events: the energy loss in the spring, the duration of the movement, and the temporal profile of the slider motion. We also study certain conditional probabilities and the statistics of mainshock-aftershock sequences. At low driving rates, we observe crackling with Omori-Utsu, Båth, and waiting time laws similar to those observed in seismic dynamics. At higher driving rates, where the sequence of events shows strong periodicity, we observe scaling laws and asymmetrical event shapes that are clearly distinguishable from those in the crackling regime.

3.
Phys Rev E ; 99(4-1): 040901, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108659

RESUMEN

We study the local and global dynamics of sheared granular materials in a stick-slip experiment, using a slider and a spring. The system crackles, with intermittent slip avalanches, or exhibits irregular or periodic dynamics, depending on the shear rate and loading stiffness. The global force on the slider during shearing captures the transitions from the crackling to the periodic regime. We deduce a dynamic phase diagram as a function of the shear rate and the loading stiffness and associated scaling laws. Using photoelastic particles, we also capture the grain-scale stress evolution, and investigate the microscopic behavior in the different regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA