Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 12361, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703976

RESUMEN

Execution of probabilistic computing algorithms require electrically programmable stochasticity to encode arbitrary probability functions and controlled stochastic interaction or correlation between probabilistic (p-) bits. The latter is implemented with complex electronic components leaving a large footprint on a chip and dissipating excessive amount of energy. Here, we show an elegant implementation with just two dipole-coupled magneto-tunneling junctions (MTJ), with magnetostrictive soft layers, fabricated on a piezoelectric film. The resistance states of the two MTJs (high or low) encode the p-bit values (1 or 0) in the two streams. The first MTJ is driven to a resistance state with desired probability via a current or voltage that generates spin transfer torque, while the second MTJ's resistance state is determined by dipole coupling with the first, thus correlating the second p-bit stream with the first. The effect of dipole coupling can be varied by generating local strain in the soft layer of the second MTJ with a local voltage (~ 0.2 V) and that varies the degree of anti-correlation between the resistance states of the two MTJs and hence between the two streams (from 0 to 100%). This paradigm generates the anti-correlation with "wireless" dipole coupling that consumes no footprint on a chip and dissipates no energy, and it controls the degree of anti-correlation with electrically generated strain that consumes minimal footprint and is extremely frugal in its use of energy. It can be extended to arbitrary number of bit streams. This realizes an "all-magnetic" platform for generating correlations or anti-correlations for probabilistic computing. It also implements a simple 2-node Bayesian network.

2.
Sci Rep ; 9(1): 16635, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719613

RESUMEN

We have theoretically studied how resonant spin wave modes in an elliptical nanomagnet are affected by fabrication defects, such as small local thickness variations. Our results indicate that defects of this nature, which can easily result from the fabrication process, or are sometimes deliberately introduced during the fabrication process, will significantly alter the frequencies, magnetic field dependence of the frequencies, and the power and phase profiles of the resonant spin wave modes. They can also spawn new resonant modes and quench existing ones. All this has important ramifications for multi-device circuits based on spin waves, such as phase locked oscillators for neuromorphic computing, where the device-to-device variability caused by defects can be inhibitory.

3.
ACS Appl Mater Interfaces ; 10(50): 43970-43977, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30468067

RESUMEN

Magnetoelastic (or "straintronic") switching has emerged as an extremely energy-efficient mechanism for switching the magnetization of magnetostrictive nanomagnets in magnetic memory and logic, and non-Boolean circuits. Here, we investigate the ultrafast magnetodynamics associated with straintronic switching in a single quasielliptical magnetostrictive Co nanomagnet deposited on a piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate using time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. The pulsed laser pump beam in the TR-MOKE plays a dual role: it causes precession of the nanomagnet's magnetization about an applied bias magnetic field and it also generates surface acoustic waves in the piezoelectric substrate that produce periodic strains in the magnetostrictive nanomagnet and modulate the precessional dynamics. This modulation gives rise to intriguing hybrid magnetodynamical modes in the nanomagnet, with a rich spin-wave texture. The characteristic frequencies of these modes are 5-15 GHz, indicating that strain can affect magnetization in a magnetostrictive nanomagnet in time scales much smaller than 1 ns (∼100 ps). This can enable ∼10 GHz range magnetoelastic nano-oscillators that are actuated by strain instead of a spin-polarized current, as well as ultrafast magnetoelectric generation of spin waves for magnonic logic circuits, holograms, etc.

4.
J Phys Condens Matter ; 30(39): 394001, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30124433

RESUMEN

We theoretically study the effect of a material defect (material void) on switching errors associated with magneto-elastic switching of magnetization in elliptical magnetostrictive nanomagnets having in-plane magnetic anisotropy. We find that the error probability increases significantly in the presence of the defect, indicating that magneto-elastic switching is particularly vulnerable to material imperfections. Curiously, there is a critical stress value that gives the lowest error probability in both defect-free and defective nanomagnets. The critical stress is much higher in defective nanomagnets than in defect-free ones. Since it is more difficult to generate the critical stress in small nanomagnets than in large nanomagnets (having the same energy barrier for thermal stability), it would be a challenge to downscale magneto-elastically switched nanomagnets in memory and other applications where reliable switching is required. This is likely to be further exacerbated by the presence of defects.

5.
Nanotechnology ; 29(44): 442001, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30052200

RESUMEN

The need for increasingly powerful computing hardware has spawned many ideas stipulating, primarily, the replacement of traditional transistors with alternate 'switches' that dissipate miniscule amounts of energy when they switch and provide additional functionality that are beneficial for information processing. An interesting idea that has emerged recently is the notion of using two-phase (piezoelectric/magnetostrictive) multiferroic nanomagnets with bistable (or multi-stable) magnetization states to encode digital information (bits), and switching the magnetization between these states with small voltages (that strain the nanomagnets) to carry out digital information processing. The switching delay is ∼1 ns and the energy dissipated in the switching operation can be few to tens of aJ, which is comparable to, or smaller than, the energy dissipated in switching a modern-day transistor. Unlike a transistor, a nanomagnet is 'non-volatile', so a nanomagnetic processing unit can store the result of a computation locally without refresh cycles, thereby allowing it to double as both logic and memory. These dual-role elements promise new, robust, energy-efficient, high-speed computing and signal processing architectures (usually non-Boolean and often non-von-Neumann) that can be more powerful, architecturally superior (fewer circuit elements needed to implement a given function) and sometimes faster than their traditional transistor-based counterparts. This topical review covers the important advances in computing and information processing with nanomagnets, with emphasis on strain-switched multiferroic nanomagnets acting as non-volatile and energy-efficient switches-a field known as 'straintronics'. It also outlines key challenges in straintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...