Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geohealth ; 6(5): e2022GH000603, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35599962

RESUMEN

Clean energy policy can provide substantial health benefits through improved air quality. As ambitious clean energy proposals are increasingly considered and adopted across the United States (US), quantifying the benefits of removal of such large air pollution emissions sources is crucial to understanding potential societal impacts of such policy. In this study, we estimate health benefits resulting from the elimination of emissions of fine particulate matter (PM2.5), sulfur dioxide, and nitrogen oxides from the electric power, transportation, building, and industrial sectors in the contiguous US. We use EPA's CO-Benefits Risk Assessment screening tool to estimate health benefits resulting from the removal of PM2.5-related emissions from these energy-related sectors. We find that nationwide efforts to eliminate energy-related emissions could prevent 53,200 (95% CI: 46,900-59,400) premature deaths each year and provide $608 billion ($537-$678 billion) in benefits from avoided PM2.5-related illness and death. We also find that an average of 69% (range: 32%-95%) of the health benefits from emissions removal remain in the emitting region. Our study provides an indication of the potential scale and distribution of public health benefits that could result from ambitious regional and nationwide clean energy and climate mitigation policy.

2.
Environ Sci Technol ; 53(7): 3987-3998, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30835995

RESUMEN

While it is known that energy efficiency (EE) lowers power sector demand and emissions, study of the air quality and public health impacts of EE has been limited. Here, we quantify the air quality and mortality impacts of a 12% summertime (June, July, and August) reduction in baseload electricity demand. We use the AVoided Emissions and geneRation Tool (AVERT) to simulate plant-level generation and emissions, the Community Multiscale Air Quality (CMAQ) model to simulate air quality, and the Environmental Benefits Mapping and Analysis Program (BenMAP) to quantify mortality impacts. We find EE reduces emissions of NO x by 13.2%, SO2 by 12.6%, and CO2 by 11.6%. On a nationwide, summer average basis, ambient PM2.5 is reduced 0.55% and O3 is reduced 0.45%. Reduced exposure to PM2.5 avoids 300 premature deaths annually (95% CI: 60 to 580) valued at $2.8 billion ($0.13 billion to $9.3 billion), and reduced exposure to O3 averts 175 deaths (101 to 244) valued at $1.6 billion ($0.15 billion to $4.5 billion). This translates into a health savings rate of $0.049/kWh ($0.031/kWh for PM2.5 and $0.018/kWh for O3). These results illustrate the importance of capturing the health benefits of EE and its potential as a strategy to achieve air standards.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Eficiencia , Material Particulado , Salud Pública , Estados Unidos
3.
PLoS Med ; 15(7): e1002599, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29969461

RESUMEN

BACKGROUND: Climate change negatively impacts human health through heat stress and exposure to worsened air pollution, amongst other pathways. Indoor use of air conditioning can be an effective strategy to reduce heat exposure. However, increased air conditioning use increases emissions of air pollutants from power plants, in turn worsening air quality and human health impacts. We used an interdisciplinary linked model system to quantify the impacts of heat-driven adaptation through building cooling demand on air-quality-related health outcomes in a representative mid-century climate scenario. METHODS AND FINDINGS: We used a modeling system that included downscaling historical and future climate data with the Weather Research and Forecasting (WRF) model, simulating building electricity demand using the Regional Building Energy Simulation System (RBESS), simulating power sector production and emissions using MyPower, simulating ambient air quality using the Community Multiscale Air Quality (CMAQ) model, and calculating the incidence of adverse health outcomes using the Environmental Benefits Mapping and Analysis Program (BenMAP). We performed simulations for a representative present-day climate scenario and 2 representative mid-century climate scenarios, with and without exacerbated power sector emissions from adaptation in building energy use. We find that by mid-century, climate change alone can increase fine particulate matter (PM2.5) concentrations by 58.6% (2.50 µg/m3) and ozone (O3) by 14.9% (8.06 parts per billion by volume [ppbv]) for the month of July. A larger change is found when comparing the present day to the combined impact of climate change and increased building energy use, where PM2.5 increases 61.1% (2.60 µg/m3) and O3 increases 15.9% (8.64 ppbv). Therefore, 3.8% of the total increase in PM2.5 and 6.7% of the total increase in O3 is attributable to adaptive behavior (extra air conditioning use). Health impacts assessment finds that for a mid-century climate change scenario (with adaptation), annual PM2.5-related adult mortality increases by 13,547 deaths (14 concentration-response functions with mean incidence range of 1,320 to 26,481, approximately US$126 billion cost) and annual O3-related adult mortality increases by 3,514 deaths (3 functions with mean incidence range of 2,175 to 4,920, approximately US$32.5 billion cost), calculated as a 3-month summer estimate based on July modeling. Air conditioning adaptation accounts for 654 (range of 87 to 1,245) of the PM2.5-related deaths (approximately US$6 billion cost, a 4.8% increase above climate change impacts alone) and 315 (range of 198 to 438) of the O3-related deaths (approximately US$3 billion cost, an 8.7% increase above climate change impacts alone). Limitations of this study include modeling only a single month, based on 1 model-year of future climate simulations. As a result, we do not project the future, but rather describe the potential damages from interactions arising between climate, energy use, and air quality. CONCLUSIONS: This study examines the contribution of future air-pollution-related health damages that are caused by the power sector through heat-driven air conditioning adaptation in buildings. Results show that without intervention, approximately 5%-9% of exacerbated air-pollution-related mortality will be due to increases in power sector emissions from heat-driven building electricity demand. This analysis highlights the need for cleaner energy sources, energy efficiency, and energy conservation to meet our growing dependence on building cooling systems and simultaneously mitigate climate change.


Asunto(s)
Aire Acondicionado/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire , Exposición a Riesgos Ambientales/efectos adversos , Arquitectura y Construcción de Instituciones de Salud , Calentamiento Global , Material Particulado/efectos adversos , Temperatura , Adulto , Anciano , Anciano de 80 o más Años , Aire Acondicionado/economía , Contaminación del Aire/economía , Causas de Muerte , Simulación por Computador , Monitoreo del Ambiente/métodos , Arquitectura y Construcción de Instituciones de Salud/economía , Femenino , Calentamiento Global/economía , Calentamiento Global/mortalidad , Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Análisis Numérico Asistido por Computador , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA