Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(2): e14367, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361475

RESUMEN

Human-induced rapid environmental change (HIREC) is creating environments deviating considerably from natural habitats in which species evolved. Concurrently, climate warming is pushing species' climatic envelopes to geographic regions that offer novel ecological conditions. The persistence of species is likely affected by the interplay between the degree of ecological novelty and phenotypic plasticity, which in turn may shape an organism's range-shifting ability. Current modelling approaches that forecast animal ranges are characterized by a static representation of the relationship between habitat use and fitness, which may bias predictions under conditions imposed by HIREC. We argue that accounting for dynamic species-resource relationships can increase the ecological realism of range shift predictions. Our rationale builds on the concepts of ecological fitting, the process whereby individuals form successful novel biotic associations based on the suite of traits they carry at the time of encountering the novel condition, and behavioural plasticity, in particular learning. These concepts have revolutionized our view on fitness in novel ecological settings, and the way these processes may influence species ranges under HIREC. We have integrated them into a model of range expansion as a conceptual proof of principle highlighting the potentially substantial role of learning ability in range shifts under HIREC.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Humanos , Evolución Biológica
2.
Biol Lett ; 17(1): 20200478, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497591

RESUMEN

Animal spatial behaviour is often presumed to reflect responses to visual cues. However, inference of behaviour in relation to the environment is challenged by the lack of objective methods to identify the information that effectively is available to an animal from a given location. In general, animals are assumed to have unconstrained information on the environment within a detection circle of a certain radius (the perceptual range; PR). However, visual cues are only available up to the first physical obstruction within an animal's PR, making information availability a function of an animal's location within the physical environment (the effective visual perceptual range; EVPR). By using LiDAR data and viewshed analysis, we modelled forest birds' EVPRs at each step along a movement path. We found that the EVPR was on average 0.063% that of an unconstrained PR and, by applying a step-selection analysis, that individuals are 1.55 times more likely to move to a tree within their EVPR than to an equivalent tree outside it. This demonstrates that behavioural choices can be substantially impacted by the characteristics of an individual's EVPR and highlights that inferences made from movement data may be improved by accounting for the EVPR.


Asunto(s)
Aves , Ecosistema , Animales , Bosques , Movimiento , Árboles
3.
Ecol Evol ; 7(1): 145-188, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28070282

RESUMEN

The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

4.
J Appl Ecol ; 53(4): 1055-1065, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27708456

RESUMEN

As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling.Here, we use a novel, individual-based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well-studied forest bird species.The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches. Synthesis and applications. We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.

5.
Ecol Evol ; 4(24): 4701-35, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25558364

RESUMEN

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

6.
Evolution ; 64(10): 2820-39, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20561048

RESUMEN

Visual signals are shaped by variation in the signaling environment through a process termed sensory drive, sometimes leading to speciation. However, the evidence for sensory drive in acoustic signals is restricted to comparisons between highly dissimilar habitats, or single-species studies in which it is difficult to rule out the influence of undetected ecological variables, pleiotropic effects, or chance. Here we assess whether this form of sensory drive-often termed "acoustic adaptation"-can generate signal divergence across ecological gradients. By studying avian communities in two Amazonian forest types, we show that songs of 17 "bamboo-specialist" bird species differ in predictable ways from their nearest relatives in adjacent terra firme forest. We also demonstrate that the direction of song divergence is correlated with the sound transmission properties of habitats, rather than with genetic divergence, ambient noise, or pleiotropic effects of mass and bill size. Our findings indicate that acoustic adaptation adds significantly to stochastic processes underlying song divergence, even when comparing between habitats with relatively similar structure. Furthermore, given that song differences potentially contribute to reproductive isolation, these findings are consistent with a wider role for sensory drive in the diversification of lineages with acoustic mating signals.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Aves/fisiología , Ecología , Vocalización Animal/fisiología , Estimulación Acústica , Animales , Aves/clasificación , Fenotipo , Selección Genética , Especificidad de la Especie , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...