Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 599(7886): 684-691, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34789882

RESUMEN

The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.


Asunto(s)
Encéfalo/citología , Células/clasificación , Ensamble y Desensamble de Cromatina , Cromatina/química , Cromatina/genética , Genes , Conformación Molecular , Animales , Sitios de Unión , Células/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Familia de Multigenes/genética , Neuronas/clasificación , Neuronas/metabolismo , Desnaturalización de Ácido Nucleico , Factores de Transcripción/metabolismo
2.
EMBO J ; 40(3): e103701, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33319920

RESUMEN

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.


Asunto(s)
Redes Reguladoras de Genes , Hipocampo/citología , Discapacidad Intelectual/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Núcleo Celular/metabolismo , Plasticidad de la Célula , Células Cultivadas , Cognición , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Discapacidad Intelectual/metabolismo , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/química , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Neuronas/citología , Neuronas/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Esquizofrenia/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
Elife ; 52016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897969

RESUMEN

SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Memoria a Largo Plazo , MicroARNs/biosíntesis , Factores de Transcripción/metabolismo , Animales , Técnicas de Inactivación de Genes , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...