Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4736, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830886

RESUMEN

Earthquakes are rupture-like processes that propagate along tectonic faults and cause seismic waves. The propagation speed and final area of the rupture, which determine an earthquake's potential impact, are directly related to the nature and quantity of the energy dissipation involved in the rupture process. Here, we present the challenges associated with defining and measuring the energy dissipation in laboratory and natural earthquakes across many scales. We discuss the importance and implications of distinguishing between energy dissipation that occurs close to and far behind the rupture tip, and we identify open scientific questions related to a consistent modeling framework for earthquake physics that extends beyond classical Linear Elastic Fracture Mechanics.

3.
Sci Adv ; 9(32): eadh3688, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556534

RESUMEN

Low-frequency earthquakes, atypical seismic events distinct from regular earthquakes, occur downdip of the seismogenic megathrust where an aseismic rheology dominates the subduction plate boundary. Well situated to provide clues on the slip regime of this unique faulting environment, their distinctive waveforms reflect either an unusual rupture process or unusually strong attenuation in their source zone. We take advantage of the unique geometry of seismicity in the Nankai Trough to isolate the spectral signature of low-frequency earthquakes after correcting for empirically derived attenuation. We observe that low-frequency earthquake spectra are consistent with the classical earthquake model, yet their rupture duration and stress drop are orders of magnitude different from ordinary earthquakes. We conclude their low-frequency nature primarily results from an atypical seismic rupture process rather than near-source attenuation.

4.
Philos Trans A Math Phys Eng Sci ; 379(2196): 20200131, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33715406

RESUMEN

Our models and understanding of the dynamics of earthquake rupture are based largely on estimates of earthquake source parameters, such as stress drop and radiated seismic energy. Unfortunately, the measurements, especially those of small and moderate-sized earthquakes (magnitude less than about 5 or 6), are not well resolved, containing significant random and potentially systematic uncertainties. The aim of this review is to provide a context in which to understand the challenges involved in estimating these measurements, and to assess the quality and reliability of reported measurements of earthquake source parameters. I also discuss some of the ways progress is being made towards more reliable parameter measurements. At present, whether the earthquake source is entirely self-similar, or not, and which factors and processes control the physics of the rupture remains, at least in the author's opinion, largely unconstrained. Detailed analysis of the best recorded earthquakes, using the increasing quantity and quality of data available, and methods less dependent on simplistic source models is one approach that may help provide better constraints. This article is part of the theme issue 'Fracture dynamics of solid materials: from particles to the globe'.

5.
Nature ; 573(7772): 42-43, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31485064

Asunto(s)
Terremotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA