Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Pharmacol Toxicol Methods ; 127: 107510, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705245

RESUMEN

Cardiovascular safety pharmacology and toxicology studies include vehicle control animals in most studies. Electrocardiogram data on common vehicles is accumulated relatively quickly. In the interests of the 3Rs principles it may be useful to use this historical information to reduce the use of animals or to refine the sensitivity of studies. We used implanted telemetry data from a large nonhuman primate (NHP) cardiovascular study (n = 48) evaluating the effect of moxifloxacin. We extracted 24 animals to conduct a n = 3/sex/group analysis. The remaining 24 animals were used to generate 1000 unique combinations of 3 male and 3 female NHP to act as control groups for the three treated groups in the n = 3/sex/group analysis. The distribution of treatment effects, median minimum detectable difference (MDD) values were gathered from the 1000 studies. These represent contemporary controls. Data were available from 42 NHP from 3 other studies in the same laboratory using the same technology. These were used to generate 1000 unique combinations of 6, 12, 18, 24 and 36 NHP to act as historical control animals for the 18 animals in the treated groups of the moxifloxacin study. Data from an additional laboratory were also available for 20 NHP. The QT, RR and QT-RR data from the three sources were comparable. However, differences in the time course of QTc effect in the vehicle data from the two laboratories meant that it was not possible to use cross-lab controls. In the case of historical controls from the same laboratory, these could be used in place of the contemporary controls in determining a treatment's effect. There appeared to be an advantage in using larger (≥18) group sizes for historical controls. These data support the opportunity of using historical controls to reduce the number of animals used in new cardiovascular studies.

2.
Clin Pharmacol Ther ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38384137

RESUMEN

After nearly 3 decades of regulatory activity concerning new drugs' potential for delayed cardiac repolarization an integrated risk assessment paradigm for small molecule drugs has been established. Regulatory guidance also suggests that for large, targeted proteins and monoclonal antibodies no quantitative clinical QTc assessment is necessary. The expansion of new drug modalities prompts the question: "Should these new modalities be treated like small molecule drugs or like monoclonal antibodies?"

3.
J Pharmacol Toxicol Methods ; 121: 107266, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963703

RESUMEN

INTRODUCTION: Characterization of the incidence of spontaneous arrhythmias to identify possible drug-related effects is often an important part of the analysis in safety pharmacology studies using telemetry. METHODS: A retrospective analysis in non-clinical species with and without telemetry transmitters was conducted. Electrocardiograms (24 h) from male and female beagle dogs (n = 131), Göttingen minipigs (n = 108) and cynomolgus non-human primates (NHP; n = 78) were analyzed. RESULTS: Ventricular tachycardia (VT) was observed in 3% of the dogs but was absent in minipigs and NHPs. Ventricular fibrillation (VF) was not observed in the 3 species. Ventricular premature beats (VPBs) were more frequent during daytime and atrioventricular blocks (AVBs) were more frequent at night in all species. A limited number of animals exhibited a high arrhythmia frequency and there was no correlation between animals with higher frequency of an arrhythmia type and the frequency of other arrythmias in the same animals. Clinical chemistry or hematology parameters were not different with or without telemetry devices. NHP with a transmural left ventricular pressure (LVP) catheter exhibited a greater incidence of VPBs and PJCs compared to telemetry animals without LVP. DISCUSSION: All species were similar with regards to the frequency of ventricular ectopic beats (26-46%) while the dog seemed to have more frequent junctional complexes and AVB compared to NHP and minipigs. Arrhythmia screening may be considered during pre-study evaluations, to exclude animals with abnormally high arrhythmia incidence.


Asunto(s)
Arritmias Cardíacas , Telemetría , Animales , Perros , Porcinos , Masculino , Femenino , Porcinos Enanos , Incidencia , Estudios Retrospectivos , Electrocardiografía
4.
J Pharmacol Toxicol Methods ; 120: 107253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36806737

RESUMEN

The number of animals used in a nonhuman primate (NHP) in vivo QTc assessment conducted as part of the safety pharmacology (SP) studies on a potential new drug is relatively small (4-8 subjects). The number is much smaller than the number of healthy volunteers in a conventional thorough QT (TQT) study (40-60 volunteers). How is it possible that such small studies could offer an equivalent sensitivity in an integrated nonclinical and clinical cardiac repolarization risk assessment? This study provided the opportunity to empirically demonstrate in a large number of NHPs the performance of a nonclinical evaluation at a similar size to a TQT study. By contrasting an analysis mimicking the sampling and aggregation of QTc interval data in a manner which is TQT-like with a more conventional SP-like analysis it was demonstrated that the SP-like analysis was more sensitive. In prospective power calculations 80% power at p = 0.05 can be achieved for a 5 ms QTc change with only n = 8 NHPs using the SP-like analysis and in a group of only 4 NHPs 80% power to detect 10 ms could be achieved. By contrast groups of 24 NHPs would be required to achieve 80% power to detect 5 ms using the TQT-like sampling and aggregation approach. Overall, this study has demonstrated that smaller safety pharmacology in vivo QTc assessments using all the available data in larger data aggregates can achieve sensitivity comparable to a human TQT study.


Asunto(s)
Electrocardiografía , Síndrome de QT Prolongado , Animales , Humanos , Estudios Prospectivos , Voluntarios Sanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Primates , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca
5.
Br J Pharmacol ; 180(15): 1965-1980, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36780899

RESUMEN

BACKGROUND AND PURPOSE: Chronic heart failure, a progressive disease with limited treatment options currently available, especially in heart failure with preserved ejection fraction (HFpEF), represents an unmet medical need as well as an economic burden. The development of a novel therapeutic to slow or reverse disease progression would be highly impactful to patients and society. Relaxin-2 (relaxin) is a human hormone regulating cardiovascular, renal, and pulmonary adaptations during pregnancy. A short-acting recombinant relaxin, Serelaxin, demonstrated short-term heart failure symptom relief and biomarker improvement in acute heart failure trials. Here, we present the development of a long-acting relaxin analogue to be tested in the treatment of chronic heart failure. EXPERIMENTAL APPROACH: LY3540378 is a long-acting protein therapeutic composed of a human relaxin analogue and a serum albumin-binding VHH domain. KEY RESULTS: LY3540378 is a potent agonist of the relaxin family peptide receptor 1 (RXFP1) and maintains selectivity against RXFP2/3/4 comparable to native relaxin. The half-life of LY3540378 in preclinical species is extended through high affinity binding of the albumin-binding VHH domain to serum albumin. When tested in a single dose administration, LY3540378 elicited relaxin-mediated pharmacodynamic responses, such as reduced serum osmolality and increased renal blood flow in rats. In an isoproterenol-induced cardiac hypertrophy mouse model, treatment with LY3540378 significantly reduced cardiac hypertrophy and improved isovolumetric relaxation time. In a monkey cardiovascular safety study, there were no adverse observations from administration of LY3540378. CONCLUSION AND IMPLICATIONS: LY3540378 demonstrated to be a suitable clinical development candidate, and is progressing in clinical trials.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Relaxina , Animales , Femenino , Humanos , Ratones , Embarazo , Ratas , Cardiomegalia/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Relaxina/farmacología , Relaxina/uso terapéutico , Relaxina/metabolismo , Volumen Sistólico
6.
Regul Toxicol Pharmacol ; 117: 104746, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32911461

RESUMEN

Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines. Survey themes addressed (1) general levels of interest and activity with EEs as therapeutic agents, (2) potential safety concerns, and (3) possible future efforts to develop targeted strategies for nonclinical safety assessment of EEs. Thirteen companies contributed data to the survey. Overall, the survey data indicate the consensus opinion that existing ICH guidelines are effective and appropriate for nonclinical safety assessment activities with EEs. Attention in the framework of study design should, on a case by case basis, be considered for delayed or latent toxicities, carcinogenicity, reproductive toxicity, and the theoretical potential for transgenerational effects. While current guidelines have been appropriate for the nonclinical safety assessments of epigenetic targets, broader experience with a wide range of epigenetic targets will provide information to assess the potential need for new or revised risk assessment strategies for EE drugs.


Asunto(s)
Industria Farmacéutica/normas , Control de Medicamentos y Narcóticos , Epigénesis Genética/efectos de los fármacos , Preparaciones Farmacéuticas/normas , Encuestas y Cuestionarios , Animales , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/tendencias , Industria Farmacéutica/tendencias , Control de Medicamentos y Narcóticos/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Epigénesis Genética/genética , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Medición de Riesgo/normas , Medición de Riesgo/tendencias
7.
J Pharmacol Toxicol Methods ; 105: 106900, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768644

RESUMEN

INTRODUCTION: It has been two decades since screening new molecules and potential clinical drug candidates against the hERG potassium channel became a routine part of safety pharmacology. The earliest heuristic for what was an adequate safety margin to separate molecules with a potential liability to cause the arrhythmia torsade de pointes (TdP) from those with no such liability emerged in 2002 and was determined to be a hERG IC50 value 30-fold above the therapeutic free plasma concentration (Webster, Leishman, & Walker, 2002). In the intervening years nonclinical and clinical ICH guidance has been introduced and intense scrutiny has been applied to the QT interval of the electrocardiogram in animals and man. Has the 30-fold heuristic stood the test of time? METHODS: The hERG margins between the IC50 value and the therapeutic unbound plasma concentrations were examined for 367 compounds. These margins were compared against the categories used by www.CredibleMeds.com to classify a drug's TdP risk. A subset of 336 of these drugs were compared against their US product labels with respect to black box warnings on QTc prolongation or TdP, warnings and precautions on QTc or TdP, and QTc language in the clinical pharmacology section. RESULTS: Against the CredibleMeds classification the means of the margins for Known, Conditional, or Possible Risk of TdP, and Not Listed (presumably no TdP liability) were 4.8, 28, 71 and 339, respectively. Against the US label language the means of margins for black boxes and warnings were 3.1 and 26, respectively. The average margins associated with, positive QTc outcome, negative QTc outcome and no QTc language were 16, 479 and 204, respectively. Based on ROC curves the optimal hERG margin thresholds to separate "Known risk of TdP" from "Not Listed" and, QTc prolongation positive from QTc negative were 37- and 50-fold, respectively. CONCLUSIONS: The observed optimal margin of 50-fold in the current study is not appreciably different from a previously reported 45-fold optimal margin (Gintant, 2011). The margin falls between the margins for negative (QTc outcome or no QTc language) and positive (positive QTc outcome, warnings or black boxes) compounds. The observed optimal margin of 37-fold in the current study is not appreciably different from the commonly used 30-fold optimal margin (Webster et al., 2002). This margin falls between those for drugs with a known or conditional TdP risk and those where it is at best a possible risk, and from the 240 drugs not listed on www.CredibleMeds.com. It is expected that there would be a small numerical difference (e.g. 37 vs. 50, or as previously published 30 vs. 45) between optimal cut-offs for the TdP liability and QTc prolongation predictions since some QTc positive drugs are described on CredibleMeds.com as having only a "Possible Risk of TdP" as they are not associated with TdP when used as directed. The fact that the margins in each category form distributions is also expected given biologic variability. However, we argue that a more consistent manner of assessing hERG potency and evaluating relevant exposures would be likely to reduce the spread in these distributions and make margins even more useful as a decision-making data point.


Asunto(s)
Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Electrocardiografía/métodos , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/metabolismo , Torsades de Pointes/inducido químicamente , Torsades de Pointes/metabolismo
8.
Int J Toxicol ; 39(4): 274-293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32406289

RESUMEN

INTRODUCTION: The Safety Pharmacology Society (SPS) conducted a membership survey to examine industry practices related mainly to cardiovascular (CV) safety pharmacology (SP). METHODS: Questions addressed nonclinical study design, data analysis methods, drug-induced effects, and conventional and novel CV assays. RESULTS: The most frequent therapeutic area targeted by drugs developed by the companies/institutions that employ survey responders was oncology. The most frequently observed drug-mediated effects included an increased heart rate, increased arterial blood pressure, hERG (IKr) block, decreased arterial blood pressure, decreased heart rate, QTc prolongation, and changes in body temperature. Broadly implemented study practices included Latin square crossover study design with n = 4 for nonrodent CV studies, statistical analysis of data (eg, analysis of variance), use of arrhythmia detection software, and the inclusion of data from all study animals when integrating SP studies into toxicology studies. Most responders frequently used individual animal housing conditions. Responders commonly evaluated drug effects on multiple ion channels, but in silico modeling methods were used much less frequently. Most responders rarely measured the J-Tpeak interval in CV studies. Uncertainties relative to Standard for Exchange of Nonclinical Data applications for data derived from CV SP studies were common. Although available, the use of human induced pluripotent stem cell cardiomyocytes remains rare. The respiratory SP study was rarely involved with identifying drug-induced functional issues. Responders indicated that the study-derived no observed effect level was more frequently determined than the no observed adverse effect level in CV SP studies; however, a large proportion of survey responders used neither.


Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Farmacología/métodos , Animales , Sistema Cardiovascular , Interpretación Estadística de Datos , Industria Farmacéutica , Humanos , Proyectos de Investigación , Encuestas y Cuestionarios
9.
Int J Toxicol ; 38(1): 23-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30567462

RESUMEN

INTRODUCTION: Based on the ICH S7B and E14 guidance documents, QT interval (QTc) is used as the primary in vivo biomarker to assess the risk of drug-induced torsades de pointes (TdP). Clinical and nonclinical data suggest that drugs that prolong the corrected QTc with balanced multiple ion channel inhibition (most importantly the l-type calcium, Cav1.2, and persistent or late inward sodium current, Nav1.5, in addition to human Ether-à-go-go-Related Gene [hERG] IKr or Kv11.1) may have limited proarrhythmic liability. The heart rate-corrected J to T-peak (JTpc) measurement in particular may be considered to discriminate selective hERG blockers from multi-ion channel blockers. METHODS: Telemetry data from Beagle dogs given dofetilide (0.3 mg/kg), sotalol (32 mg/kg), and verapamil (30 mg/kg) orally and Cynomolgus monkeys given medetomidine (0.4 mg/kg) orally were retrospectively analyzed for effects on QTca, JTpca, and T-peak to T-end covariate adjusted (Tpeca) interval using individual rate correction and super intervals (calculated from 0-6, 6-12, 12-18, and 18-24 hours postdose). RESULTS: Dofetilide and cisapride (IKr or Kv11.1 blockers) were associated with significant increases in QTca and JTpca, while sotalol was associated with significant increases in QTca, JTpca, and Tpeca. Verapamil (a Kv11.1 and Cav1.2 blocker) resulted in a reduction in QTca and JTpca, however, and increased Tpeca. Medetomidine was associated with a reduction in Tpeca and increase in JTpca. DISCUSSION: Results from this limited retrospective electrocardiogram analysis suggest that JTpca and Tpeca may discriminate selective IKr blockers and multichannel blockers and could be considered in the context of an integrated comprehensive proarrhythmic risk assessment.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Electrocardiografía/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Biomarcadores , Cisaprida/farmacología , Perros , Evaluación Preclínica de Medicamentos , Síndrome de QT Prolongado/inducido químicamente , Macaca fascicularis , Masculino , Medetomidina/farmacología , Fenetilaminas/farmacología , Sotalol/farmacología , Sulfonamidas/farmacología , Telemetría , Verapamilo/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-26045062

RESUMEN

Over the years a number of drugs have been approved for human use with limited signs of toxicity noted during preclinical risk assessment study designs but then show adverse events in compliant patients taking the drugs as prescribed within the first few years on the market. Loss or impairments in sensory systems, such as hearing, vision, taste, and smell have been reported to the FDA or have been described in the literature appearing in peer-reviewed scientific journals within the first five years of widespread use. This review highlights the interactive cross-modal compensation within sensory systems that can occur that reduces the likelihood of identifying these losses in less sentient animals used in standard preclinical toxicology and safety protocols. We provide some historical and experimental evidence to substantiate these sensory effects in and highlight the critical importance of detailed training of technicians on basic ethological, species-specific behaviors of all purpose-bred laboratory animals used in these study designs. We propose that the time, effort and cost of training technicians to be better able to identify and document very subtle changes in behavior will serve to increase the likelihood of early detection of biomarkers predictive of drug-induced sensory loss within current standard regulatory preclinical research protocols.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Trastornos de la Sensación/inducido químicamente , Trastornos de la Sensación/tratamiento farmacológico , Sensación/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Evaluación Preclínica de Medicamentos/métodos , Humanos , Medición de Riesgo , Seguridad
11.
Handb Exp Pharmacol ; 229: 267-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26091644

RESUMEN

Safety pharmacology satisfies a key requirement in the process of drug development. Safety pharmacology studies are required to assess the impact of a new chemical entity (NCE) or biotechnology-derived product for human use on vital systems, such as those subserving auditory function. Safety pharmacology studies accordingly are defined as those studies that investigate the potential undesirable effects of a substance on auditory functions in relation to exposure in and above the therapeutic range. Auditory safety studies should be designed with the primary objective of determining how administration of a compound influences normal hearing. If an effect on hearing is identified, then it is necessary to determine through histopathology the underlying mechanism for the observed hearing loss. Since the auditory system contains a heterogeneous mixture of structural and cellular components that are organized in a very complex and integrated manner, it is necessary to clearly identify the underlying primary mechanism or target of the new chemical entity that produced the hearing loss. This chapter will highlight major components of auditory function with regard to potential opportunities for drug interaction. Aspects of designing ototoxicity studies will be discussed with an emphasis on standards deemed necessary by the US Food and Drug Administration. Additionally, classes of ototoxic compounds and their proposed mechanisms of action are described in depth.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Audición/efectos de los fármacos , Animales , Descubrimiento de Drogas , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Humanos
12.
Artículo en Inglés | MEDLINE | ID: mdl-25981377

RESUMEN

INTRODUCTION: The Food and Drug Administration (FDA) requires thorough evaluation of the potential safety hazards of all new drugs, food additives, and therapeutic devices that are intended for human use. Drugs that are otically administered (i.e., ear drops), or are known to systemically distribute to the inner ear, require additional specialized safety testing to ensure that the drug does not permanently impair auditory function. METHODS: To properly determine a drug's impact on auditory function, the FDA's Center for Drug Evaluation and Research requires the use of the Auditory Brainstem Response (ABR) evaluation. The ABR evaluation uses auditory stimuli evoked potentials to assess function by establishing minimum intensity thresholds. These thresholds can be monitored following drug treatment to determine an impact on hearing loss. This review discusses methodical considerations for conducting ABR evaluations as they apply to specialized drug safety studies. Alternative assays are discussed and compared to the utility of the ABR evaluation. CONCLUSIONS: The ABR evaluation provides reliable and sensitive measures of hearing function that are suitable for definitive drug safety evaluations or hazardous risk assessments.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Pérdida Auditiva/inducido químicamente , Animales , Pérdida Auditiva/diagnóstico , Humanos , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...