Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Diseases ; 12(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38667531

RESUMEN

The impact of outbreak response immunization (ORI) can be estimated by comparing observed outcomes to modelled counterfactual scenarios without ORI, but the most appropriate metrics depend on stakeholder needs and data availability. This study developed a framework for using mathematical models to assess the impact of ORI for vaccine-preventable diseases. Framework development involved (1) the assessment of impact metrics based on stakeholder interviews and literature reviews determining data availability and capacity to capture as model outcomes; (2) mapping investment in ORI elements to model parameters to define scenarios; (3) developing a system for engaging stakeholders and formulating model questions, performing analyses, and interpreting results; and (4) example applications for different settings and pathogens. The metrics identified as most useful were health impacts, economic impacts, and the risk of severe outbreaks. Scenario categories included investment in the response scale, response speed, and vaccine targeting. The framework defines four phases: (1) problem framing and data sourcing (identification of stakeholder needs, metrics, and scenarios); (2) model choice; (3) model implementation; and (4) interpretation and communication. The use of the framework is demonstrated by application to two outbreaks, measles in Papua New Guinea and Ebola in the Democratic Republic of the Congo. The framework is a systematic way to engage with stakeholders and ensure that an analysis is fit for purpose, makes the best use of available data, and uses suitable modelling methodology.

2.
Lancet Gastroenterol Hepatol ; 8(10): 932-942, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517417

RESUMEN

Hepatitis B is estimated to cause 500 000-900 000 deaths globally each year. WHO has targets for elimination by 2030; however, progress has stalled due to multiple barriers, notably a paucity of global funding and insufficient evidence on the economic burden of disease. Using a dynamic mathematical model of hepatitis B transmission, disease progression, and mortality in the six WHO regions, we estimate the costs and benefits of reaching 90% vaccination, 90% diagnosis, and 80% treatment coverage by either 2030 (as targeted), 2040, or 2050. Without increased intervention coverage, hepatitis B mortality was estimated to cost US$784·35 billion (95% Crl 731·63-798·33 billion) globally in lost productivity over 2022-50. Achieving targets by 2030 averted 25·64 million infections (95% Crl 17·39-34·55 million) and 8·63 million hepatitis B-attributable deaths (95% Crl 7·12-9·74 million) over 2022-50. This achievement incurred an incremental cost of $2934·55 (95% Crl 2778·55-3173·52) per disability-adjusted life year averted by 2050 under a health systems perspective, and was cost-saving with a net economic benefit of $99·03 billion (95% Crl 78·66-108·96 billion) by 2050 from a societal perspective. Delayed achievement of intervention coverage targets had reduced health and economic benefits. These findings highlight that hepatitis B is an underappreciated cause of economic burden and show investment toward elimination will probably yield substantial returns.


Asunto(s)
Costos de la Atención en Salud , Hepatitis B , Humanos , Modelos Teóricos , Análisis Costo-Beneficio , Costo de Enfermedad , Hepatitis B/epidemiología , Hepatitis B/prevención & control
3.
Front Public Health ; 11: 1150810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333560

RESUMEN

Background: In 2021, the Australian Government Department of Health commissioned a consortium of modelling groups to generate evidence assisting the transition from a goal of no community COVID-19 transmission to 'living with COVID-19', with adverse health and social consequences limited by vaccination and other measures. Due to the extended school closures over 2020-21, maximizing face-to-face teaching was a major objective during this transition. The consortium was tasked with informing school surveillance and contact management strategies to minimize infections and support this goal. Methods: Outcomes considered were infections and days of face-to-face teaching lost in the 45 days following an outbreak within an otherwise COVID-naïve school setting. A stochastic agent-based model of COVID-19 transmission was used to evaluate a 'test-to-stay' strategy using daily rapid antigen tests (RATs) for close contacts of a case for 7 days compared with home quarantine; and an asymptomatic surveillance strategy involving twice-weekly screening of all students and/or teachers using RATs. Findings: Test-to-stay had similar effectiveness for reducing school infections as extended home quarantine, without the associated days of face-to-face teaching lost. Asymptomatic screening was beneficial in reducing both infections and days of face-to-face teaching lost and was most beneficial when community prevalence was high. Interpretation: Use of RATs in school settings for surveillance and contact management can help to maximize face-to-face teaching and minimize outbreaks. This evidence supported the implementation of surveillance testing in schools in several Australian jurisdictions from January 2022.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Cuarentena , SARS-CoV-2 , Pandemias/prevención & control , Australia/epidemiología
4.
PLOS Glob Public Health ; 3(6): e0001025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37343015

RESUMEN

High rates of drug-resistant tuberculosis (DR-TB) continue to threaten public health, especially in Eastern Europe. Costs for treating DR-TB are substantially higher than treating drug-susceptible TB, and higher yet if DR-TB services are delivered in hospital. The WHO recommends that multidrug-resistant (MDR) TB be treated using mainly ambulatory care, shown to have non-inferior health outcomes, however, there has been a delay to transition away from hospital-focused MDR-TB care in certain Eastern European countries. Allocative efficiency analyses were conducted for three countries in Eastern Europe, Belarus, the Republic of Moldova, and Romania, to minimise a combination of TB incidence, prevalence, and mortality by 2035. A primary focus of these studies was to determine the health benefits and financial savings that could be realised if DR-TB service delivery shifted from hospital-focused to ambulatory care. Here we provide a comprehensive assessment of findings from these studies to demonstrate the collective benefit of transitioning from hospital-focused to ambulatory TB care, and to address common regional considerations. We highlight that transitioning from hospital-focused to ambulatory TB care could reduce treatment costs by 20% in Romania, 24% in Moldova, and by as much as 40% in Belarus or almost 35 million US dollars across these three countries by 2035 without affecting quality of care. Improved TB outcomes could be achieved, however, without additional spending by reinvesting these savings in higher-impact TB diagnosis and more efficacious DR-TB treatment regimens. We found commonalities in the large portion of TB cases treated in hospital across these three regional countries, and similar obstacles to transitioning to ambulatory care. National governments in the Eastern European region should examine barriers delaying adoption of ambulatory DR-TB care and consider lost opportunities caused by delays in switching to more efficient treatment modes.

5.
PNAS Nexus ; 2(5): pgad119, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37143862

RESUMEN

Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially the presumed role of selective synaptic failure, is less understood. To further this understanding, we estimate biophysical model parameters from the EEG power spectra from individual patients with a good or poor recovery from a postanoxic encephalopathy. This biophysical model includes intracortical, intrathalamic, and corticothalamic synaptic strengths, as well as synaptic time constants and axonal conduction delays. We used continuous EEG measurements from hundred comatose patients recorded during the first 48 h postcardiac arrest, 50 with a poor neurological outcome [cerebral performance category ( CPC = 5 ) ] and 50 with a good neurological outcome ( CPC = 1 ). We only included patients that developed (dis-)continuous EEG activity within 48 h postcardiac arrest. For patients with a good outcome, we observed an initial relative excitation in the corticothalamic loop and corticothalamic propagation that subsequently evolved towards values observed in healthy controls. For patients with a poor outcome, we observed an initial increase in the cortical excitation-inhibition ratio, increased relative inhibition in the corticothalamic loop, delayed corticothalamic propagation of neuronal activity, and severely prolonged synaptic time constants that did not return to physiological values. We conclude that the abnormal EEG evolution in patients with a poor neurological recovery after cardiac arrest may result from persistent and selective synaptic failure that includes corticothalamic circuitry and also delayed corticothalamic propagation.

6.
BMC Public Health ; 23(1): 988, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237343

RESUMEN

BACKGROUND: Policy responses to COVID-19 in Victoria, Australia over 2020-2021 have been supported by evidence generated through mathematical modelling. This study describes the design, key findings, and process for policy translation of a series of modelling studies conducted for the Victorian Department of Health COVID-19 response team during this period. METHODS: An agent-based model, Covasim, was used to simulate the impact of policy interventions on COVID-19 outbreaks and epidemic waves. The model was continually adapted to enable scenario analysis of settings or policies being considered at the time (e.g. elimination of community transmission versus disease control). Model scenarios were co-designed with government, to fill evidence gaps prior to key decisions. RESULTS: Understanding outbreak risk following incursions was critical to eliminating community COVID-19 transmission. Analyses showed risk depended on whether the first detected case was the index case, a primary contact of the index case, or a 'mystery case'. There were benefits of early lockdown on first case detection and gradual easing of restrictions to minimise resurgence risk from undetected cases. As vaccination coverage increased and the focus shifted to controlling rather than eliminating community transmission, understanding health system demand was critical. Analyses showed that vaccines alone could not protect health systems and need to be complemented with other public health measures. CONCLUSIONS: Model evidence offered the greatest value when decisions needed to be made pre-emptively, or for questions that could not be answered with empiric data and data analysis alone. Co-designing scenarios with policy-makers ensured relevance and increased policy translation.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Victoria/epidemiología , SARS-CoV-2 , Control de Enfermedades Transmisibles , Políticas
7.
Cell Rep ; 42(4): 112308, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36976678

RESUMEN

Much of the world's population had already been infected with COVID-19 by the time the Omicron variant emerged at the end of 2021, but the scale of the Omicron wave was larger than any that had come before or has happened since, and it left a global imprinting of immunity that changed the COVID-19 landscape. In this study, we simulate a South African population and demonstrate how population-level vaccine effectiveness and efficiency changed over the course of the first 2 years of the pandemic. We then introduce three hypothetical variants and evaluate the impact of vaccines with different properties. We find that variant-chasing vaccines have a narrow window of dominating pre-existing vaccines but that a variant-chasing vaccine strategy may have global utility, depending on the rate of spread from setting to setting. Next-generation vaccines might be able to overcome uncertainty in pace and degree of viral evolution.


Asunto(s)
COVID-19 , Vacunas , Humanos , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2
8.
Sci Rep ; 13(1): 1398, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697434

RESUMEN

Between June and August 2020, an agent-based model was used to project rates of COVID-19 infection incidence and cases diagnosed as positive from 15 September to 31 October 2020 for 72 geographic settings. Five scenarios were modelled: a baseline scenario where no future changes were made to existing restrictions, and four scenarios representing small or moderate changes in restrictions at two intervals. Post hoc, upper and lower bounds for number of diagnosed Covid-19 cases were compared with actual data collected during the prediction window. A regression analysis with 17 covariates was performed to determine correlates of accurate projections. It was found that the actual data fell within the lower and upper bounds in 27 settings and out of bounds in 45 settings. The only statistically significant predictor of actual data within the predicted bounds was correct assumptions about future policy changes (OR 15.04; 95% CI 2.20-208.70; p = 0.016). Frequent changes in restrictions implemented by governments, which the modelling team was not always able to predict, in part explains why the majority of model projections were inaccurate compared with actual outcomes and supports revision of projections when policies are changed as well as the importance of modelling teams collaborating with policy experts.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Políticas , Predicción , Análisis de Regresión
9.
Health Res Policy Syst ; 20(1): 107, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209122

RESUMEN

The COVID-19 pandemic has brought the combined disciplines of public health, infectious disease and policy modelling squarely into the spotlight. Never before have decisions regarding public health measures and their impacts been such a topic of international deliberation, from the level of individuals and communities through to global leaders. Nor have models-developed at rapid pace and often in the absence of complete information-ever been so central to the decision-making process. However, after nearly 3 years of experience with modelling, policy-makers need to be more confident about which models will be most helpful to support them when taking public health decisions, and modellers need to better understand the factors that will lead to successful model adoption and utilization. We present a three-stage framework for achieving these ends.


Asunto(s)
COVID-19 , Salud Pública , Personal Administrativo , Humanos , Pandemias , Políticas
10.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210311, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35965469

RESUMEN

Long-term control of SARS-CoV-2 outbreaks depends on the widespread coverage of effective vaccines. In Australia, two-dose vaccination coverage of above 90% of the adult population was achieved. However, between August 2020 and August 2021, hesitancy fluctuated dramatically. This raised the question of whether settings with low naturally derived immunity, such as Queensland where less than [Formula: see text] of the population is known to have been infected in 2020, could have achieved herd immunity against 2021's variants of concern. To address this question, we used the agent-based model Covasim. We simulated outbreak scenarios (with the Alpha, Delta and Omicron variants) and assumed ongoing interventions (testing, tracing, isolation and quarantine). We modelled vaccination using two approaches with different levels of realism. Hesitancy was modelled using Australian survey data. We found that with a vaccine effectiveness against infection of 80%, it was possible to control outbreaks of Alpha, but not Delta or Omicron. With 90% effectiveness, Delta outbreaks may have been preventable, but not Omicron outbreaks. We also estimated that a decrease in hesitancy from 20% to 14% reduced the number of infections, hospitalizations and deaths by over 30%. Overall, we demonstrate that while herd immunity may not be attainable, modest reductions in hesitancy and increases in vaccine uptake may greatly improve health outcomes. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Asunto(s)
COVID-19 , Inmunidad Colectiva , Australia/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Queensland/epidemiología , SARS-CoV-2 , Vacunación
11.
Sci Rep ; 12(1): 6309, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428853

RESUMEN

We used an agent-based model Covasim to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the state. Then, using the calibrated model, we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period without recorded cases of locally acquired infections, known in Australian settings as "zero community transmission". We also examined how the threat of new variants reduces given a range of vaccination levels. Specifically, the model calibration covered the first-wave period from early March 2020 to May 2020. Predicted epidemic trajectories were simulated from early February 2021 to late March 2021. Our simulations showed that one infected agent with the ancestral (A.2.2) variant has a 14% chance of crossing a threshold of sustained community transmission (SCT) (i.e., > 5 infections per day, more than 3 days in a row), assuming no change in the prevailing preventative and counteracting policies. However, one agent carrying the alpha (B.1.1.7) variant has a 43% chance of crossing the same threshold; a threefold increase with respect to the ancestral strain; while, one agent carrying the delta (B.1.617.2) variant has a 60% chance of the same threshold, a fourfold increase with respect to the ancestral strain. The delta variant is 50% more likely to trigger SCT than the alpha variant. Doubling the average number of daily tests from ∼ 6,000 to 12,000 results in a decrease of this SCT probability from 43 to 33% for the alpha variant. However, if the delta variant is circulating we would need an average of 100,000 daily tests to achieve a similar decrease in SCT risk. Further, achieving a full-vaccination coverage of 70% of the adult population, with a vaccine with 70% effectiveness against infection, would decrease the probability of SCT from a single seed of alpha from 43 to 20%, on par with the ancestral strain in a naive population. In contrast, for the same vaccine coverage and same effectiveness, the probability of SCT from a single seed of delta would decrease from 62 to 48%, a risk slightly above the alpha variant in a naive population. Our results demonstrate that the introduction of even a small number of people infected with high-transmission variants dramatically increases the probability of sustained community transmission in Queensland. Until very high vaccine coverage is achieved, a swift implementation of policies and interventions, together with high quarantine adherence rates, will be required to minimise the probability of sustained community transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Australia/epidemiología , COVID-19/epidemiología , Humanos , Queensland/epidemiología , SARS-CoV-2/genética
12.
BMC Infect Dis ; 22(1): 232, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255823

RESUMEN

BACKGROUND: In settings with zero community transmission, any new SARS-CoV-2 outbreaks are likely to be the result of random incursions. The level of restrictions in place at the time of the incursion is likely to considerably affect possible outbreak trajectories, but the probability that a large outbreak eventuates is not known. METHODS: We used an agent-based model to investigate the relationship between ongoing restrictions and behavioural factors, and the probability of an incursion causing an outbreak and the resulting growth rate. We applied our model to the state of Victoria, Australia, which has reached zero community transmission as of November 2020. RESULTS: We found that a future incursion has a 45% probability of causing an outbreak (defined as a 7-day average of > 5 new cases per day within 60 days) if no restrictions were in place, decreasing to 23% with a mandatory masks policy, density restrictions on venues such as restaurants, and if employees worked from home where possible. A drop in community symptomatic testing rates was associated with up to a 10-percentage point increase in outbreak probability, highlighting the importance of maintaining high testing rates as part of a suppression strategy. CONCLUSIONS: Because the chance of an incursion occurring is closely related to border controls, outbreak risk management strategies require an integrated approaching spanning border controls, ongoing restrictions, and plans for response. Each individual restriction or control strategy reduces the risk of an outbreak. They can be traded off against each other, but if too many are removed there is a danger of accumulating an unsafe level of risk. The outbreak probabilities estimated in this study are of particular relevance in assessing the downstream risks associated with increased international travel.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Humanos , Estudios Longitudinales , SARS-CoV-2 , Victoria/epidemiología
13.
PLoS Comput Biol ; 17(9): e1009255, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570767

RESUMEN

Approximately 85% of tuberculosis (TB) related deaths occur in low- and middle-income countries where health resources are scarce. Effective priority setting is required to maximise the impact of limited budgets. The Optima TB tool has been developed to support analytical capacity and inform evidence-based priority setting processes for TB health benefits package design. This paper outlines the Optima TB framework and how it was applied in Belarus, an upper-middle income country in Eastern Europe with a relatively high burden of TB. Optima TB is a population-based disease transmission model, with programmatic cost functions and an optimisation algorithm. Modelled populations include age-differentiated general populations and higher-risk populations such as people living with HIV. Populations and prospective interventions are defined in consultation with local stakeholders. In partnership with the latter, demographic, epidemiological, programmatic, as well as cost and spending data for these populations and interventions are then collated. An optimisation analysis of TB spending was conducted in Belarus, using program objectives and constraints defined in collaboration with local stakeholders, which included experts, decision makers, funders and organisations involved in service delivery, support and technical assistance. These analyses show that it is possible to improve health impact by redistributing current TB spending in Belarus. Specifically, shifting funding from inpatient- to outpatient-focused care models, and from mass screening to active case finding strategies, could reduce TB prevalence and mortality by up to 45% and 50%, respectively, by 2035. In addition, an optimised allocation of TB spending could lead to a reduction in drug-resistant TB infections by 40% over this period. This would support progress towards national TB targets without additional financial resources. The case study in Belarus demonstrates how reallocations of spending across existing and new interventions could have a substantial impact on TB outcomes. This highlights the potential for Optima TB and similar modelling tools to support evidence-based priority setting.


Asunto(s)
Asignación de Recursos/economía , Programas Informáticos , Tuberculosis/economía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Niño , Preescolar , Biología Computacional , Análisis Costo-Beneficio , Femenino , Costos de la Atención en Salud/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Modelos Biológicos , Modelos Económicos , Prevalencia , Estudios Prospectivos , República de Belarús/epidemiología , Tuberculosis/epidemiología , Tuberculosis/transmisión , Adulto Joven
14.
PLoS Comput Biol ; 17(7): e1009149, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310589

RESUMEN

The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.


Asunto(s)
COVID-19 , Modelos Biológicos , SARS-CoV-2 , Análisis de Sistemas , Número Básico de Reproducción , COVID-19/etiología , COVID-19/prevención & control , COVID-19/transmisión , Prueba de COVID-19 , Vacunas contra la COVID-19 , Biología Computacional , Simulación por Computador , Trazado de Contacto , Progresión de la Enfermedad , Desinfección de las Manos , Interacciones Microbiota-Huesped , Humanos , Máscaras , Conceptos Matemáticos , Pandemias , Distanciamiento Físico , Cuarentena , Programas Informáticos
15.
Nat Commun ; 12(1): 2993, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017008

RESUMEN

Initial COVID-19 containment in the United States focused on limiting mobility, including school and workplace closures. However, these interventions have had enormous societal and economic costs. Here, we demonstrate the feasibility of an alternative control strategy, test-trace-quarantine: routine testing of primarily symptomatic individuals, tracing and testing their known contacts, and placing their contacts in quarantine. We perform this analysis using Covasim, an open-source agent-based model, which has been calibrated to detailed demographic, mobility, and epidemiological data for the Seattle region from January through June 2020. With current levels of mask use and schools remaining closed, we find that high but achievable levels of testing and tracing are sufficient to maintain epidemic control even under a return to full workplace and community mobility and with low vaccine coverage. The easing of mobility restrictions in June 2020 and subsequent scale-up of testing and tracing programs through September provided real-world validation of our predictions. Although we show that test-trace-quarantine can control the epidemic in both theory and practice, its success is contingent on high testing and tracing rates, high quarantine compliance, relatively short testing and tracing delays, and moderate to high mask use. Thus, in order for test-trace-quarantine to control transmission with a return to high mobility, strong performance in all aspects of the program is required.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Trazado de Contacto/métodos , Cuarentena/métodos , Humanos , SARS-CoV-2/aislamiento & purificación , Estados Unidos
16.
BMJ Open ; 11(4): e045941, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879491

RESUMEN

OBJECTIVES: The early stages of the COVID-19 pandemic illustrated that SARS-CoV-2, the virus that causes the disease, has the potential to spread exponentially. Therefore, as long as a substantial proportion of the population remains susceptible to infection, the potential for new epidemic waves persists even in settings with low numbers of active COVID-19 infections, unless sufficient countermeasures are in place. We aim to quantify vulnerability to resurgences in COVID-19 transmission under variations in the levels of testing, tracing and mask usage. SETTING: The Australian state of New South Wales (NSW), a setting with prolonged low transmission, high mobility, non-universal mask usage and a well-functioning test-and-trace system. PARTICIPANTS: None (simulation study). RESULTS: We find that the relative impact of masks is greatest when testing and tracing rates are lower and vice versa. Scenarios with very high testing rates (90% of people with symptoms, plus 90% of people with a known history of contact with a confirmed case) were estimated to lead to a robustly controlled epidemic. However, across comparable levels of mask uptake and contact tracing, the number of infections over this period was projected to be 2-3 times higher if the testing rate was 80% instead of 90%, 8-12 times higher if the testing rate was 65% or 30-50 times higher with a 50% testing rate. In reality, NSW diagnosed 254 locally acquired cases over this period, an outcome that had a moderate probability in the model (10%-18%) assuming low mask uptake (0%-25%), even in the presence of extremely high testing (90%) and near-perfect community contact tracing (75%-100%), and a considerably higher probability if testing or tracing were at lower levels. CONCLUSIONS: Our work suggests that testing, tracing and masks can all be effective means of controlling transmission. A multifaceted strategy that combines all three, alongside continued hygiene and distancing protocols, is likely to be the most robust means of controlling transmission of SARS-CoV-2.


Asunto(s)
COVID-19 , Pandemias , Australia/epidemiología , Trazado de Contacto , Humanos , Máscaras , Nueva Gales del Sur/epidemiología , SARS-CoV-2
17.
Lancet Glob Health ; 9(7): e916-e924, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857499

RESUMEN

BACKGROUND: Vietnam has emerged as one of the world's leading success stories in responding to COVID-19. After a prolonged period of little to no transmission, there was an outbreak of unknown source in July, 2020, in the Da Nang region, but the outbreak was quickly suppressed. We aimed to use epidemiological, behavioural, demographic, and policy data from the COVID-19 outbreak in Da Nang to calibrate an agent-based model of COVID-19 transmission for Vietnam, and to estimate the risk of future outbreaks associated with reopening of international borders in the country. METHODS: For this modelling study, we used comprehensive data from June 15 to Oct 15, 2020, on testing, COVID-19 cases, and quarantine breaches within an agent-based model of SARS-CoV-2 transmission to model a COVID-19 outbreak in Da Nang in July, 2020. We applied this model to quantify the risk of future outbreaks in Vietnam in the 3 months after the reopening of international borders, under different behavioural scenarios, policy responses (ie, closure of workplaces and schools), and ongoing testing. FINDINGS: We estimated that the outbreak in Da Nang between July and August, 2020, resulted in substantial community transmission, and that higher levels of symptomatic testing could have mitigated this transmission. We estimated that the outbreak peaked on Aug 2, 2020, with an estimated 1060 active infections (95% projection interval 890-1280). If the population of Vietnam remains highly compliant with mask-wearing policies, our projections indicate that the epidemic would remain under control even if a small but steady flow of imported infections escaped quarantine into the community. However, if complacency increases and testing rates are relatively low (10% of symptomatic individuals are tested), the epidemic could rebound again, resulting in an estimated 2100 infections (95% projected interval 1050-3610) in 3 months. These outcomes could be mitigated if the behaviour of the general population responds dynamically to increases in locally acquired cases that exceed specific thresholds, but only if testing of symptomatic individuals is also increased. INTERPRETATION: The successful response to COVID-19 in Vietnam could be improved even further with higher levels of symptomatic testing. If the previous approaches are used in response to new COVID-19 outbreaks, epidemic control is possible even in the presence of low levels of imported cases. FUNDING: Ministry of Science and Technology (Vietnam). TRANSLATION: For the Vietnamese translation of the abstract see Supplementary Materials section.


Asunto(s)
COVID-19/epidemiología , Enfermedades Transmisibles Importadas/epidemiología , Epidemias , Viaje/legislación & jurisprudencia , Humanos , Internacionalidad , Modelos Teóricos , Medición de Riesgo , Vietnam/epidemiología
18.
Med J Aust ; 214(2): 79-83, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33207390

RESUMEN

OBJECTIVES: To assess the risks associated with relaxing coronavirus disease 2019 (COVID-19)-related physical distancing restrictions and lockdown policies during a period of low viral transmission. DESIGN: Network-based viral transmission risks in households, schools, workplaces, and a variety of community spaces and activities were simulated in an agent-based model, Covasim. SETTING: The model was calibrated for a baseline scenario reflecting the epidemiological and policy environment in Victoria during March-May 2020, a period of low community viral transmission. INTERVENTION: Policy changes for easing COVID-19-related restrictions from May 2020 were simulated in the context of interventions that included testing, contact tracing (including with a smartphone app), and quarantine. MAIN OUTCOME MEASURE: Increase in detected COVID-19 cases following relaxation of restrictions. RESULTS: Policy changes that facilitate contact of individuals with large numbers of unknown people (eg, opening bars, increased public transport use) were associated with the greatest risk of COVID-19 case numbers increasing; changes leading to smaller, structured gatherings with known contacts (eg, small social gatherings, opening schools) were associated with lower risks. In our model, the rise in case numbers following some policy changes was notable only two months after their implementation. CONCLUSIONS: Removing several COVID-19-related restrictions within a short period of time should be undertaken with care, as the consequences may not be apparent for more than two months. Our findings support continuation of work from home policies (to reduce public transport use) and strategies that mitigate the risk associated with re-opening of social venues.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Monitoreo Epidemiológico , Política de Salud , Modelos Teóricos , Distanciamiento Físico , Cuarentena , Trazado de Contacto/métodos , Humanos , Aplicaciones Móviles , Medición de Riesgo , SARS-CoV-2 , Teléfono Inteligente , Victoria/epidemiología
19.
BMC Health Serv Res ; 20(1): 409, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393341

RESUMEN

BACKGROUND: Diabetes is one of the leading causes of poor health and high care costs in Ukraine. To prevent diabetes complications and alleviate the financial burden of diabetes care on patients, the Ukrainian government reimburses diabetes medication and provides glucose monitoring, but there are significant gaps in the care continuum. We estimate the costs of providing diabetes care and the most cost-effective ways to address these gaps in the Poltava region of Ukraine. METHODS: We gathered data on the unit costs of diabetes interventions in Poltava and estimated expenditure on diabetes care. We estimated the optimal combination of facility-based and outreach screening and investigated how additional funding could best be allocated to improve glucose control outcomes. RESULTS: Of the ~ 40,000 adults in diabetes care, only ~ 25% achieved sustained glucose control. Monitoring costs were higher for those who did not: by 10% for patients receiving non-pharmacological treatment, by 61% for insulin patients, and twice as high for patients prescribed oral treatment. Initiatives to improve treatment adherence (e.g. medication copayment schemes, enhanced adherence counseling) would address barriers along the care continuum and we estimate such expenditures may be recouped by reductions in patient monitoring costs. Improvements in case detection are also needed, with only around two-thirds of estimated cases having been diagnosed. Outreach screening campaigns could play a significant role: depending on how well-targeted and scalable such campaigns are, we estimate that 10-46% of all screening could be conducted via outreach, at a cost per positive patient identified of US$7.12-9.63. CONCLUSIONS: Investments to improve case detection and treatment adherence are the most efficient interventions for improved diabetes control in Poltava. Quantitative tools provide essential decision support for targeting investment to close the gaps in care.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/economía , Diabetes Mellitus/diagnóstico , Tamizaje Masivo/economía , Glucemia , Análisis Costo-Beneficio , Consejo , Humanos , Ucrania
20.
Nat Commun ; 10(1): 1056, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837462

RESUMEN

Traveling patterns of neuronal activity-brain waves-have been observed across a breadth of neuronal recordings, states of awareness, and species, but their emergence in the human brain lacks a firm understanding. Here we analyze the complex nonlinear dynamics that emerge from modeling large-scale spontaneous neural activity on a whole-brain network derived from human tractography. We find a rich array of three-dimensional wave patterns, including traveling waves, spiral waves, sources, and sinks. These patterns are metastable, such that multiple spatiotemporal wave patterns are visited in sequence. Transitions between states correspond to reconfigurations of underlying phase flows, characterized by nonlinear instabilities. These metastable dynamics accord with empirical data from multiple imaging modalities, including electrical waves in cortical tissue, sequential spatiotemporal patterns in resting-state MEG data, and large-scale waves in human electrocorticography. By moving the study of functional networks from a spatially static to an inherently dynamic (wave-like) frame, our work unifies apparently diverse phenomena across functional neuroimaging modalities and makes specific predictions for further experimentation.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiología , Imagen de Difusión Tensora/métodos , Modelos Neurológicos , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Simulación por Computador , Electrocorticografía , Femenino , Voluntarios Sanos , Humanos , Masculino , Red Nerviosa , Neuronas , Dinámicas no Lineales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...