Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(18): 183001, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775374

RESUMEN

We present a new measurement of the 1S-3S two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of 9×10^{-13}. The proton charge radius deduced from this measurement, r_{p}=0.877(13) fm, is in very good agreement with the current CODATA-recommended value. This result contributes to the ongoing search to solve the proton charge radius puzzle, which arose from a discrepancy between the CODATA value and a more precise determination of r_{p} from muonic hydrogen spectroscopy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-28113421

RESUMEN

We present a detailed characterization of two atomic clock interrogation systems based on two different cryogenic sapphire oscillators operated simultaneously. We use them as references for two accurate fountain clock frequency standards participating in international atomic time and operating both at the quantum projection noise frequency limit. The two fountain comparison down to a few 10􀀀16 over 28 days demonstrates the potential of a cryocooled oscillator to replace a He refilled cryogenic oscillator.

3.
Phys Rev Lett ; 110(23): 230801, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25167479

RESUMEN

We have measured the frequency of the extremely narrow 1S-2S two-photon transition in atomic hydrogen using a remote cesium fountain clock with the help of a 920 km stabilized optical fiber. With an improved detection method we obtain f(1S-2S)=2466 061 413 187 018 (11) Hz with a relative uncertainty of 4.5×10(-15), confirming our previous measurement obtained with a local cesium clock [C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011)]. Combining these results with older measurements, we constrain the linear combinations of Lorentz boost symmetry violation parameters c((TX))=(3.1±1.9)×10(-11) and 0.92c((TY))+0.40c((TZ))=(2.6±5.3)×10(-11) in the standard model extension framework [D. Colladay, V. A. Kostelecký, Phys. Rev. D. 58, 116002 (1998)].

4.
Artículo en Inglés | MEDLINE | ID: mdl-22481772

RESUMEN

We give an overview of the work done with the Laboratoire National de Métrologie et d'Essais-Systèmes de Référence Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years. After a description of the clock ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest developments, we review recent studies of several systematic frequency shifts. This includes the distributed cavity phase shift, which we evaluate for the FO1 and FOM fountains, applying the techniques of our recent work on FO2. We also report calculations of the microwave lensing frequency shift for the three fountains, review the status of the blackbody radiation shift, and summarize recent experimental work to control microwave leakage and spurious phase perturbations. We give current accuracy budgets. We also describe several applications in time and frequency metrology: fountain comparisons, calibrations of the international atomic time, secondary representation of the SI second based on the (87)Rb hyperfine frequency, absolute measurements of optical frequencies, tests of the T2L2 satellite laser link, and review fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally, we give a summary of the tests of the PHARAO cold atom space clock performed using the FOM transportable fountain.

5.
Phys Rev Lett ; 107(20): 203001, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181729

RESUMEN

We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10)  Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.

6.
Artículo en Inglés | MEDLINE | ID: mdl-20211784

RESUMEN

We report the operation of a dual Rb/Cs atomic fountain clock. (133)Cs and (87)Rb atoms are cooled, launched, and detected simultaneously in LNE-SYRTE's FO2 double fountain. The dual clock operation occurs with no degradation of either the stability or the accuracy. We describe the key features for achieving such a simultaneous operation. We also report on the results of the first Rb/Cs frequency measurement campaign performed with FO2 in this dual atom clock configuration, including a new determination of the absolute (87)Rb hyperfine frequency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA