Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 311(5): H1075-H1090, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27614227

RESUMEN

Scarring and remodeling of the left ventricle (LV) after myocardial infarction (MI) results in ischemic cardiomyopathy with reduced contractile function. Regional differences related to persisting ischemia may exist. We investigated the hypothesis that mitochondrial function and structure is altered in the myocardium adjacent to MI with reduced perfusion (MIadjacent) and less so in the remote, nonischemic myocardium (MIremote). We used a pig model of chronic coronary stenosis and MI (n = 13). Functional and perfusion MR imaging 6 wk after intervention showed reduced ejection fraction and increased global wall stress compared with sham-operated animals (Sham; n = 14). Regional strain in MIadjacent was reduced with reduced contractile reserve; in MIremote strain was also reduced but responsive to dobutamine and perfusion was normal compared with Sham. Capillary density was unchanged. Cardiac myocytes isolated from both regions had reduced basal and maximal oxygen consumption rate, as well as through complex I and II, but complex IV activity was unchanged. Reduced respiration was not associated with detectable reduction of mitochondrial density. There was no significant change in AMPK or glucose transporter expression levels, but glycogen content was significantly increased in both MIadjacent and MIremote Glycogen accumulation was predominantly perinuclear; mitochondria in this area were smaller but only in MIadjacent where also subsarcolemmal mitochondria were smaller. In conclusion, after MI reduction of mitochondrial respiration and glycogen accumulation occur in all LV regions suggesting that reduced perfusion does not lead to additional specific changes and that increased hemodynamic load is the major driver for changes in mitochondrial function.


Asunto(s)
Cardiomiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Consumo de Oxígeno , Remodelación Ventricular , Proteínas Quinasas Activadas por AMP/genética , Animales , Western Blotting , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/etiología , Cardiomiopatías/patología , Respiración de la Célula , Cicatriz , Estenosis Coronaria/complicaciones , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Glucógeno/metabolismo , Imagen por Resonancia Magnética , Microscopía Electrónica , Microscopía Fluorescente , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Imagen de Perfusión Miocárdica , Miocitos Cardíacos/ultraestructura , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Volumen Sistólico , Sus scrofa , Porcinos
2.
Cardiovasc Res ; 101(3): 411-22, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24368833

RESUMEN

AIMS: Differentiation of cardiac fibroblasts (Fbs) into myofibroblasts (MyoFbs) is responsible for connective tissue build-up in myocardial remodelling. We examined MyoFb differentiation and reversibility. METHODS AND RESULTS: Adult rat cardiac Fbs were cultured on a plastic substratum providing mechanical stress, with conditions to obtain different levels of Fb differentiation. Fb spontaneously differentiated to proliferating MyoFb (p-MyoFb) with stress fibre formation decorated with alpha-smooth muscle actin (α-SMA). Transforming growth factor-ß1 (TGF-ß1) promoted differentiation into α-SMA-positive MyoFb showing near the absence of proliferation, i.e. non-p-MyoFb. SD-208, a TGF-ß-receptor-I (TGF-ß-RI) kinase blocker, inhibited p-MyoFb differentiation as shown by stress fibre absence, low α-SMA expression, and high proliferation levels. Fb seeded in collagen matrices induced no contraction, whereas p-MyoFb and non-p-MyoFb induced 2.5- and four-fold contraction. Fb produced little collagen but high levels of interleukin-10. Non-p-MyoFb had high collagen production and high monocyte chemoattractant protein-1 and tissue inhibitor of metalloproteinases-1 levels. Transcriptome analysis indicated differential activation of gene networks related to differentiation of MyoFb (e.g. paxilin and PAK) and reduced proliferation of non-p-MyoFb (e.g. cyclins and cell cycle regulation). Dedifferentiation of p-MyoFb with stress fibre de-polymerization, but not of non-p-MyoFb, was induced by SD-208 despite maintained stress. Stress fibre de-polymerization could also be induced by mechanical strain release in p-MyoFb and non-p-MyoFb (2-day cultures in unrestrained 3-D collagen matrices). Only p-MyoFb showed true dedifferentiation after long-term 3-D cultures. CONCLUSIONS: Fb, p-MyoFb, and non-p-MyoFb have a distinct gene expression, ultrastructural, and functional profile. Both reduction in mechanical strain and TGF-ß-RI kinase inhibition can reverse p-MyoFb differentiation but not non-p-MyoFb.


Asunto(s)
Miofibroblastos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Colágeno/metabolismo , Expresión Génica/efectos de los fármacos , Masculino , Miofibroblastos/citología , Pteridinas/farmacología , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Estrés Fisiológico , Factor de Crecimiento Transformador beta1/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 294(4): H1851-61, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18245566

RESUMEN

Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization of Kv1.5 subunits in cardiac myocytes. Recombinant SAP97 or Kv1.5 subunits tagged with green fluorescent protein (GFP) were overexpressed in rat neonatal cardiac myocytes and in Chinese hamster ovary (CHO) cells from adenoviral or plasmidic vectors. Immunocytochemistry, fluorescence recovery after photobleaching, and patch-clamp techniques were used to study the effects of SAP97 on the localization, mobility, and function of Kv1.5 subunits. Adenovirus-mediated SAP97 overexpression in cardiac myocytes resulted in the clustering of endogenous Kv1.5 subunits at myocyte-myocyte contacts and an increase in both the maintained component of the outward K(+) current, I(Kur) (5.64 +/- 0.57 pA/pF in SAP97 myocytes vs. 3.23 +/- 0.43 pA/pF in controls) and the number of 4-aminopyridine-sensitive potassium channels in cell-attached membrane patches. In live myocytes, GFP-Kv1.5 subunits were mobile and organized in clusters at the basal plasma membrane, whereas SAP97 overexpression reduced their mobility. In CHO cells, Kv1.5 channels were diffusely distributed throughout the cell body and freely mobile. When coexpressed with SAP97, Kv subunits were organized in plaquelike clusters and poorly mobile. In conclusion, SAP97 regulates the K(+) current in cardiac myocytes by retaining and immobilizing Kv1.5 subunits in the plasma membrane. This new regulatory mechanism may contribute to the targeting of Kv channels in cardiac myocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Canal de Potasio Kv1.5/metabolismo , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , 4-Aminopiridina/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Adenoviridae/genética , Animales , Animales Recién Nacidos , Células CHO , Membrana Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Cricetulus , Homólogo 1 de la Proteína Discs Large , Recuperación de Fluorescencia tras Fotoblanqueo , Vectores Genéticos , Inmunohistoquímica , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/genética , Potenciales de la Membrana , Proteínas de la Membrana/genética , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Transporte de Proteínas , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección
4.
J Physiol ; 582(Pt 3): 1205-17, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17525113

RESUMEN

Membrane lipid composition is a major determinant of cell excitability. In this study, we assessed the role of membrane cholesterol composition in the distribution and function of Kv1.5-based channels in rat cardiac membranes. In isolated rat atrial myocytes, the application of methyl-beta-cyclodextrin (MCD), an agent that depletes membrane cholesterol, caused a delayed increase in the Kv1.5-based sustained component, I(kur), which reached steady state in approximately 7 min. This effect was prevented by preloading the MCD with cholesterol. MCD-increased current was inhibited by low 4-aminopyridine concentration. Neonatal rat cardiomyocytes transfected with Green Fluorescent Protein (GFP)-tagged Kv1.5 channels showed a large ultrarapid delayed-rectifier current (I(Kur)), which was also stimulated by MCD. In atrial cryosections, Kv1.5 channels were mainly located at the intercalated disc, whereas caveolin-3 predominated at the cell periphery. A small portion of Kv1.5 floated in the low-density fractions of step sucrose-gradient preparations. In live neonatal cardiomyocytes, GFP-tagged Kv1.5 channels were predominantly organized in clusters at the basal plasma membrane. MCD caused reorganization of Kv1.5 subunits into larger clusters that redistributed throughout the plasma membrane. The MCD effect on clusters was sizable 7 min after its application. We conclude that Kv1.5 subunits are concentrated in cholesterol-enriched membrane microdomains distinct from caveolae, and that redistribution of Kv1.5 subunits by depletion of membrane cholesterol increases their current-carrying capacity.


Asunto(s)
Colesterol/fisiología , Canal de Potasio Kv1.5/fisiología , Miocitos Cardíacos/fisiología , Animales , Animales Recién Nacidos , Caveolas/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Atrios Cardíacos/citología , Atrios Cardíacos/efectos de los fármacos , Canal de Potasio Kv1.5/aislamiento & purificación , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/fisiología , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...