Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Clin Pract ; 14(4): e200309, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38808024

RESUMEN

Background and Objectives: Cockayne syndrome (CS) is an ultra-rare, autosomal recessive, premature aging disorder characterized by impaired growth, neurodevelopmental delays, neurodegeneration, polyneuropathy, and other multiorgan system complications. The anatomic aspects of CS neurodegeneration have long been known from postmortem examinations and MRI studies, but the clinical features of this neurodegeneration are not well characterized, especially at later stages of the disease. Methods: This was a retrospective observational study in which individuals with CS who survived beyond 18 years were ascertained at 3 centers in the United States, France, and the United Kingdom. Medical records were examined to determine the frequencies and features of the following neurologic complications: neurocognitive/neuropsychiatric decline (8 symptoms), tremors, neuropathy, seizures, and strokes. Results: Among 18 individuals who met inclusion criteria, all but one (94.4%) experienced at least one symptom of neurocognitive/neuropsychiatric decline, with most individuals experiencing at least half of those symptoms. Most participants experienced tremors and peripheral neuropathy, with a few experiencing seizures and strokes. For individuals with available data, 100.0% were reported to have gait ataxia and neuroimaging showed that 85.7% had generalized cerebral atrophy on MRI while 78.6% had white matter changes. Discussion: Symptoms of neurocognitive/neuropsychiatric decline are nearly universal in our cohort of adults with CS, suggesting that these individuals are at risk of developing neurocognitive/neuropsychiatric decline, with symptoms related to but not specific to dementia. Considering the prominent role of DNA repair defects in CS disease mechanisms and emerging evidence for increased DNA damage in neurodegenerative disease, impaired genome maintenance may be a shared pathway underlying multiple forms of neurocognitive/neuropsychiatric decline. Components of the DNA damage response mechanism may bear further study as potential therapeutic targets that could alleviate neurocognitive/neuropsychiatric symptoms in CS and other neurodegenerative disorders.

2.
Brain ; 146(12): 5044-5059, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040034

RESUMEN

Xeroderma pigmentosum (XP) results from biallelic mutations in any of eight genes involved in DNA repair systems, thus defining eight different genotypes (XPA, XPB, XPC, XPD, XPE, XPF, XPG and XP variant or XPV). In addition to cutaneous and ophthalmological features, some patients present with XP neurological disease. It is unknown whether the different neurological signs and their progression differ among groups. Therefore, we aim to characterize the XP neurological disease and its evolution in the heterogeneous UK XP cohort. Patients with XP were followed in the UK National XP Service, from 2009 to 2021. Age of onset for different events was recorded. Cerebellar ataxia and additional neurological signs and symptoms were rated with the Scale for the Assessment and Rating of Ataxia (SARA), the Inventory of Non-Ataxia Signs (INAS) and the Activities of Daily Living questionnaire (ADL). Patients' mutations received scores based on their predicted effects. Data from available ancillary tests were collected. Ninety-three XP patients were recruited. Thirty-six (38.7%) reported neurological symptoms, especially in the XPA, XPD and XPG groups, with early-onset and late-onset forms, and typically appearing after cutaneous and ophthalmological symptoms. XPA, XPD and XPG patients showed higher SARA scores compared to XPC, XPE and XPV. SARA total scores significantly increased over time in XPD (0.91 points/year, 95% confidence interval: 0.61, 1.21) and XPA (0.63 points/year, 95% confidence interval: 0.38, 0.89). Hyporeflexia, hypopallesthaesia, upper motor neuron signs, chorea, dystonia, oculomotor signs and cognitive impairment were frequent findings in XPA, XPD and XPG. Cerebellar and global brain atrophy, axonal sensory and sensorimotor neuropathies, and sensorineural hearing loss were common findings in patients. Some XPC, XPE and XPV cases presented with abnormalities on examination and/or ancillary tests, suggesting underlying neurological involvement. More severe mutations were associated with a faster progression in SARA total score in XPA (0.40 points/year per 1-unit increase in severity score) and XPD (0.60 points/year per 1-unit increase), and in ADL total score in XPA (0.35 points/year per 1-unit increase). Symptomatic and asymptomatic forms of neurological disease are frequent in XP patients, and neurological symptoms can be an important cause of disability. Typically, the neurological disease will be preceded by cutaneous and ophthalmological features, and these should be actively searched in patients with idiopathic late-onset neurological syndromes. Scales assessing cerebellar function, especially walking and speech, and disability can show progression in some of the groups. Mutation severity can be used as a prognostic biomarker for stratification purposes in clinical trials.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Xerodermia Pigmentosa , Humanos , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/diagnóstico , Actividades Cotidianas , Estudios Prospectivos , Reparación del ADN , Mutación/genética
3.
Pediatrics ; 148(4)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34593652

RESUMEN

A teenage girl had the rare combined phenotype of xeroderma pigmentosum and trichothiodystrophy, resulting from mutations in the XPD (ERCC2) gene involved in nucleotide excision repair (NER). After treatment with antibiotics, including metronidazole for recurrent infections, she showed signs of acute and severe hepatotoxicity, which gradually resolved after withdrawal of the treatment. Cultured skin fibroblasts from the patient revealed cellular sensitivity to killing by metronidazole compared with cells from a range of other donors. This reveals that the metronidazole sensitivity was an intrinsic property of her cells. It is well recognized that patients with Cockayne syndrome, another NER disorder, are at high risk of metronidazole-induced hepatotoxicity, but this had not been reported in individuals with other NER disorders. We would urge extreme caution in the use of metronidazole in the management of individuals with the xeroderma pigmentosum and trichothiodystrophy overlap or trichothiodystrophy phenotypes.


Asunto(s)
Antibacterianos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Metronidazol/efectos adversos , Síndromes de Tricotiodistrofia/complicaciones , Xerodermia Pigmentosa/complicaciones , Adolescente , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Mutación , Síndromes de Tricotiodistrofia/genética , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
4.
Proc Natl Acad Sci U S A ; 113(9): E1236-45, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884178

RESUMEN

Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins.


Asunto(s)
Xerodermia Pigmentosa/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Heterogeneidad Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Reino Unido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...