Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8054, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052795

RESUMEN

Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.


Asunto(s)
Ácido Hialurónico , Neoplasias , Animales , Longevidad/genética , Mamíferos , Ratas Topo/genética , Mutación
2.
Nature ; 621(7977): 196-205, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612507

RESUMEN

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Asunto(s)
Envejecimiento Saludable , Hialuronano Sintasas , Ácido Hialurónico , Longevidad , Ratas Topo , Animales , Ratones , Ácido Hialurónico/biosíntesis , Ácido Hialurónico/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/prevención & control , Ratones Transgénicos , Ratas Topo/genética , Longevidad/genética , Longevidad/inmunología , Longevidad/fisiología , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Envejecimiento Saludable/genética , Envejecimiento Saludable/inmunología , Envejecimiento Saludable/fisiología , Transgenes/genética , Transgenes/fisiología , Transcriptoma , Neoplasias/genética , Neoplasias/prevención & control , Estrés Oxidativo , Gerociencia , Rejuvenecimiento/fisiología
3.
Science ; 381(6658): eabq5693, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561875

RESUMEN

Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Mamíferos , Adulto , Animales , Humanos , Epigenoma , Genoma , Mamíferos/genética , Filogenia
4.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37215017

RESUMEN

Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.

5.
Cell Metab ; 34(6): 836-856.e5, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580607

RESUMEN

Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with expression levels negatively or positively correlated with a species' maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. Pos-MLS genes show enrichment in DNA repair, microtubule organization, and RNA transport. Expression of Neg- and Pos-MLS genes is modulated by interventions, including mTOR and PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian regulation possibly to avoid persistent high expression, whereas Pos-MLS genes are targets of master pluripotency regulators OCT4 and NANOG and are upregulated during somatic cell reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly downregulated after birth. This work provides targets for anti-aging interventions by defining pathways correlating with longevity across mammals and uncovering circadian and pluripotency networks as central regulators of longevity.


Asunto(s)
Longevidad , Transcriptoma , Envejecimiento/fisiología , Animales , Reparación del ADN , Longevidad/genética , Mamíferos/genética , Transcriptoma/genética
6.
Nat Aging ; 2(1): 46-59, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35368774

RESUMEN

Naked mole rats (NMRs) live an exceptionally long life, appear not to exhibit age-related decline in physiological capacity and are resistant to age-related diseases. However, it has been unknown whether NMRs also evade aging according to a primary hallmark of aging: epigenetic changes. To address this question, we profiled n = 385 samples from 11 tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). We observed strong epigenetic aging effects and developed seven highly accurate epigenetic clocks for several tissues (pan-tissue, blood, kidney, liver, skin clocks) and two dual-species (human-NMR) clocks. The skin clock correctly estimated induced pluripotent stem cells derived from NMR fibroblasts to be of prenatal age. The NMR epigenetic clocks revealed that breeding NMR queens age more slowly than nonbreeders, a feature that is also observed in some eusocial insects. Our results show that despite a phenotype of negligible senescence, the NMR ages epigenetically.


Asunto(s)
Metilación de ADN , Garrapatas , Animales , Humanos , Metilación de ADN/genética , Envejecimiento/genética , Epigénesis Genética , Ratas Topo/genética
7.
Nat Commun ; 13(1): 355, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039495

RESUMEN

The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species.


Asunto(s)
Envejecimiento/genética , Epigénesis Genética , Ratas Topo/crecimiento & desarrollo , Ratas Topo/genética , Envejecimiento/sangre , Animales , Relojes Biológicos/genética , Islas de CpG/genética , Metilación de ADN/genética , Demografía , Regulación de la Expresión Génica , Humanos , Ratones , Ratas Topo/sangre , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
8.
Cell Rep ; 37(6): 109965, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758328

RESUMEN

The North American beaver is an exceptionally long-lived and cancer-resistant rodent species. Here, we report the evolutionary changes in its gene coding sequences, copy numbers, and expression. We identify changes that likely increase its ability to detoxify aldehydes, enhance tumor suppression and DNA repair, and alter lipid metabolism, potentially contributing to its longevity and cancer resistance. Hpgd, a tumor suppressor gene, is uniquely duplicated in beavers among rodents, and several genes associated with tumor suppression and longevity are under positive selection in beavers. Lipid metabolism genes show positive selection signals, changes in copy numbers, or altered gene expression in beavers. Aldh1a1, encoding an enzyme for aldehydes detoxification, is particularly notable due to its massive expansion in beavers, which enhances their cellular resistance to ethanol and capacity to metabolize diverse aldehyde substrates from lipid oxidation and their woody diet. We hypothesize that the amplification of Aldh1a1 may contribute to the longevity of beavers.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Aldehídos/metabolismo , Genes Supresores de Tumor , Genoma , Lípidos/química , Longevidad , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Femenino , Humanos , Masculino , Ratones , Filogenia , Roedores
9.
Sci Adv ; 7(44): eabj3284, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705500

RESUMEN

DNA mutations in somatic cells have been implicated in the causation of aging, with longer-lived species having a higher capacity to maintain genome sequence integrity than shorter-lived species. In an attempt to directly test this hypothesis, we used single-cell whole-genome sequencing to analyze spontaneous and bleomycin-induced somatic mutations in lung fibroblasts of four rodent species with distinct maximum life spans, including mouse, guinea pig, blind mole-rat, and naked mole-rat, as well as humans. As predicted, the mutagen-induced mutation frequencies inversely correlated with species-specific maximum life span, with the greatest difference observed between the mouse and all other species. These results suggest that long-lived species are capable of processing DNA damage in a more accurate way than short-lived species.

10.
Nat Immunol ; 22(10): 1219-1230, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556881

RESUMEN

Blind mole rats (BMRs) are small rodents, characterized by an exceptionally long lifespan (>21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). Cells and tissues of BMRs express very low levels of DNA methyltransferase 1. Following cell hyperplasia, the BMR genome DNA loses methylation, resulting in the activation of RTEs. Upregulated RTEs form cytoplasmic RNA-DNA hybrids, which activate the cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and humans. We propose that RTEs were co-opted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of the innate immune response. Activation of RTEs is a double-edged sword, serving as a tumor suppressor but contributing to aging in late life via the induction of sterile inflammation.


Asunto(s)
Elementos Transponibles de ADN/inmunología , Inmunidad Innata/inmunología , Ratas Topo/inmunología , Neoplasias/inmunología , Animales , Carcinogénesis/inmunología , Línea Celular Tumoral , Proliferación Celular/fisiología , Células Cultivadas , ADN/inmunología , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratas , Transducción de Señal/inmunología
11.
Nat Commun ; 11(1): 2376, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398747

RESUMEN

Naked mole-rat (NMR), the longest-living rodent, produces very-high-molecular-mass hyaluronan (vHMM-HA), compared to other mammalian species. However, it is unclear if exceptional polymer length of vHMM-HA is important for longevity. Here, we show that vHMM-HA (>6.1 MDa) has superior cytoprotective properties compared to the shorter HMM-HA. It protects not only NMR cells, but also mouse and human cells from stress-induced cell-cycle arrest and cell death in a polymer length-dependent manner. The cytoprotective effect is dependent on the major HA-receptor, CD44. We find that vHMM-HA suppresses CD44 protein-protein interactions, whereas HMM-HA promotes them. As a result, vHMM-HA and HMM-HA induce opposing effects on the expression of CD44-dependent genes, which are associated with the p53 pathway. Concomitantly, vHMM-HA partially attenuates p53 and protects cells from stress in a p53-dependent manner. Our results implicate vHMM-HA in anti-aging mechanisms and suggest the potential applications of vHMM-HA for enhancing cellular stress resistance.


Asunto(s)
Citoprotección/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , Citoprotección/fisiología , Regulación de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/aislamiento & purificación , Ácido Hialurónico/metabolismo , Longevidad/fisiología , Ratones , Ratas Topo/fisiología , Peso Molecular , Cultivo Primario de Células , Mapas de Interacción de Proteínas/efectos de los fármacos , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Especificidad de la Especie , Estrés Fisiológico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Cell Metab ; 29(4): 871-885.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30853213

RESUMEN

Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.


Asunto(s)
Inflamación/metabolismo , Proteínas de Unión al ARN/metabolismo , Sirtuinas/metabolismo , Factores de Edad , Animales , Didesoxinucleótidos/administración & dosificación , Didesoxinucleótidos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas de Unión al ARN/antagonistas & inhibidores , Sirtuinas/deficiencia , Estavudina/administración & dosificación , Estavudina/farmacología , Nucleótidos de Timina/administración & dosificación , Nucleótidos de Timina/farmacología , Zidovudina/administración & dosificación , Zidovudina/análogos & derivados , Zidovudina/farmacología
13.
Stem Cell Reports ; 9(5): 1721-1734, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29107597

RESUMEN

Naked mole rat (NMR) is a valuable model for aging and cancer research due to its exceptional longevity and cancer resistance. We observed that the reprogramming efficiency of NMR fibroblasts in response to OSKM was drastically lower than that of mouse fibroblasts. Expression of SV40 LargeT antigen (LT) dramatically improved reprogramming of NMR fibroblasts. Inactivation of Rb alone, but not p53, was sufficient to improve reprogramming efficiency, suggesting that NMR chromatin may be refractory to reprogramming. Analysis of the global histone landscape revealed that NMR had higher levels of repressive H3K27 methylation marks and lower levels of activating H3K27 acetylation marks than mouse. ATAC-seq revealed that in NMR, promoters of reprogramming genes were more closed than mouse promoters, while expression of LT led to massive opening of the NMR promoters. These results suggest that NMR displays a more stable epigenome that resists de-differentiation, contributing to the cancer resistance and longevity of this species.


Asunto(s)
Animales Modificados Genéticamente/genética , Reprogramación Celular , Quimera/genética , Epigénesis Genética , Código de Histonas , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Quimera/embriología , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratas Topo
14.
Aging (Albany NY) ; 8(5): 841-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27163160

RESUMEN

Differences in the way human and mouse fibroblasts experience senescence in culture had long puzzled researchers. While senescence of human cells is mediated by telomere shortening, Parrinello et al. demonstrated that senescence of mouse cells is caused by extreme oxygen sensitivity. It was hypothesized that the striking difference in oxygen sensitivity between mouse and human cells explains their different rates of aging. To test if this hypothesis is broadly applicable, we cultured cells from 16 rodent species with diverse lifespans in 3% and 21% oxygen and compared their growth rates. Unexpectedly, fibroblasts derived from laboratory mouse strains were the only cells demonstrating extreme sensitivity to oxygen. Cells from hamster, muskrat, woodchuck, capybara, blind mole rat, paca, squirrel, beaver, naked mole rat and wild-caught mice were mildly sensitive to oxygen, while cells from rat, gerbil, deer mouse, chipmunk, guinea pig and chinchilla showed no difference in the growth rate between 3% and 21% oxygen. We conclude that, although the growth of primary fibroblasts is generally improved by maintaining cells in 3% oxygen, the extreme oxygen sensitivity is a peculiarity of laboratory mouse strains, possibly related to their very long telomeres, and fibroblast oxygen sensitivity does not directly correlate with species' lifespan.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Longevidad/fisiología , Oxígeno/administración & dosificación , Telómero/fisiología , Animales , Células Cultivadas , Senescencia Celular/fisiología , Fibroblastos/citología , Estrés Oxidativo , Especificidad de la Especie
15.
Nature ; 499(7458): 346-9, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23783513

RESUMEN

The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Ácido Hialurónico/metabolismo , Secuencia de Aminoácidos , Animales , Proliferación Celular , Células Cultivadas , Inhibición de Contacto , Resistencia a la Enfermedad , Fibroblastos/metabolismo , Glucuronosiltransferasa/química , Cobayas , Humanos , Hialuronano Sintasas , Ratones , Ratas Topo , Datos de Secuencia Molecular
16.
Proc Natl Acad Sci U S A ; 109(47): 19392-6, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129611

RESUMEN

Blind mole rats Spalax (BMR) are small subterranean rodents common in the Middle East. BMR is distinguished by its adaptations to life underground, remarkable longevity (with a maximum documented lifespan of 21 y), and resistance to cancer. Spontaneous tumors have never been observed in spalacids. To understand the mechanisms responsible for this resistance, we examined the growth of BMR fibroblasts in vitro of the species Spalax judaei and Spalax golani. BMR cells proliferated actively for 7-20 population doublings, after which the cells began secreting IFN-ß, and the cultures underwent massive necrotic cell death within 3 d. The necrotic cell death phenomenon was independent of culture conditions or telomere shortening. Interestingly, this cell behavior was distinct from that observed in another long-lived and cancer-resistant African mole rat, Heterocephalus glaber, the naked mole rat in which cells display hypersensitivity to contact inhibition. Sequestration of p53 and Rb proteins using SV40 large T antigen completely rescued necrotic cell death. Our results suggest that cancer resistance of BMR is conferred by massive necrotic response to overproliferation mediated by p53 and Rb pathways, and triggered by the release of IFN-ß. Thus, we have identified a unique mechanism that contributes to cancer resistance of this subterranean mammal extremely adapted to life underground.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Fibroblastos/patología , Necrosis/patología , Neoplasias/patología , Spalax/inmunología , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Inhibición de Contacto , Fibroblastos/metabolismo , Humanos , Interferón beta/metabolismo , Masculino , Ratones , Fenotipo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Acortamiento del Telómero , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...