Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(11): 3461-3474, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37528320

RESUMEN

Myeloid-derived suppressor cells (MDSC) have been linked to loss of immune effector cell function through a variety of mechanisms such as the generation of reactive oxygen and nitrogen species and the production of inhibitory cytokines. Our group has shown that signaling through Bruton's tyrosine kinase (BTK) is important for MDSC function. Ibrutinib is an orally administered targeted agent that inhibits BTK activation and is currently used for the treatment of B cell malignancies. Using a syngeneic murine model of melanoma, the effect of BTK inhibition with ibrutinib on the therapeutic response to systemic PD-L1 blockade was studied. BTK was expressed by murine MDSC and their activation was inhibited by ibrutinib. Ibrutinib was not directly cytotoxic to cancer cells in vitro, but it inhibited BTK activation in MDSC and reduced expression of inducible nitric oxide synthase (NOS2) and production of nitric oxide. Ibrutinib treatments decreased the levels of circulating MDSC in vivo and increased the therapeutic efficacy of anti-PD-L1 antibody treatment. Gene expression profiling showed that ibrutinib decreased Cybb (NOX2) signaling, and increased IL-17 signaling (upregulating downstream targets Mmp9, Ptgs2, and S100a8). These results suggest that further exploration of MDSC inhibition could enhance the immunotherapy of advanced melanoma.PrécisInhibition of Bruton's tyrosine kinase, a key enzyme in myeloid cellular function, improves therapeutic response to an anti-PD-L1 antibody in an otherwise fairly resistant murine melanoma model.


Asunto(s)
Antineoplásicos , Melanoma , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa/metabolismo , Proteínas Tirosina Quinasas , Células Supresoras de Origen Mieloide/metabolismo , Antígeno B7-H1 , Inmunoterapia , Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico
2.
Front Immunol ; 12: 740890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712230

RESUMEN

Introduction: Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells that inhibit anti-tumor immunity and contribute to immune therapy resistance. MDSC populations were measured in melanoma patients receiving immune checkpoint inhibitors (ICI). Methods: Patients with melanoma (n=128) provided blood samples at baseline (BL), and before cycles 2 and 3 (BC2, BC3). Peripheral blood mononuclear cells (PBMC) were analyzed for MDSC (CD33+/CD11b+/HLA- DRlo/-) and MDSC subsets, monocytic (CD14+, M-MDSC), granulocytic (CD15+, PMN-MDSC), and early (CD14-/CD15-, E-MDSC) via flow cytometry. Statistical analysis employed unpaired and paired t-tests across and within patient cohorts. Results: Levels of MDSC as a percentage of PBMC increased during ICI (BL: 9.2 ± 1.0% to BC3: 23.6 ± 1.9%, p<0.0001), and patients who developed progressive disease (PD) had higher baseline MDSC. In patients who had a complete or partial response (CR, PR), total MDSC levels rose dramatically and plateaued (BL: 6.4 ± 1.4%, BC2: 26.2 ± 4.2%, BC3: 27.5 ± 4.4%; p<0.0001), whereas MDSC rose less sharply in PD patients (BL: 11.7 ± 2.1%, BC2: 18.3 ± 3.1%, BC3: 19.0 ± 3.2%; p=0.1952). Subset analysis showed that within the expanding MDSC population, PMN-MDSC and E-MDSC levels decreased, while the proportion of M-MDSC remained constant during ICI. In PD patients, the proportion of PMN-MDSC (as a percentage of total MDSC) decreased (BL: 25.1 ± 4.7%, BC2: 16.1 ± 5.2%, BC3: 8.6 ± 1.8%; p=0.0105), whereas a heretofore under-characterized CD14+/CD15+ double positive MDSC subpopulation increased significantly (BL: 8.7 ± 1.4% to BC3: 26.9 ± 4.9%; p=0.0425). Conclusions: MDSC levels initially increased significantly in responders. PMN-MDSC decreased and CD14+CD15+ MDSC increased significantly in PD patients. Changes in MDSC levels may have prognostic value in ICI.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ipilimumab/uso terapéutico , Melanoma/tratamiento farmacológico , Células Supresoras de Origen Mieloide/inmunología , Nivolumab/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Recuento de Células , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
3.
Cancer Immunol Immunother ; 68(8): 1379-1389, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31338557

RESUMEN

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide and epidermal growth factor receptor (EGFR) is overexpressed in greater than 90% of patient tumors. Cetuximab is a monoclonal antibody that binds to EGFR and can activate immune cells, such as natural killer (NK) cells, that express receptors for the Fc (constant region) of immunoglobulin G. IL-15 (interleukin-15) is a critical factor for the development, proliferation and activation of effector NK cells. A novel IL-15 compound known as ALT-803 that consists of genetically modified IL-15 plus the IL-15 receptor alpha protein (IL15Rα) fused to the Fc portion of IgG1 has recently been developed. We hypothesized that treatment with ALT-803 would increase NK cell-mediated cytotoxicity of cetuximab-coated head and neck squamous cells. CD56+ NK cells from normal healthy donors were treated overnight with ALT-803 and tested for their ability to lyse cetuximab-coated tumor cells. Cytotoxicity was greater following NK cell ALT-803 activation, as compared to controls. ALT-803-treated NK cells secreted significantly higher levels of IFN-γ than control conditions. Additionally, NK cells showed increased levels of phospho-ERK and phospho-STAT5 when co-cultured with cetuximab-coated tumors and ALT-803. Administration of both cetuximab and ALT-803 to mice harboring Cal27 SCCHN tumors resulted in significantly decreased tumor volume when compared to controls and compared to single-agent treatment alone. Overall, the present data suggest that cetuximab treatment in combination with ALT-803 in patients with EGFR-positive SCCHN may result in significant NK cell activation and have important anti-tumor activity.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Cetuximab/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Proteínas/uso terapéutico , Animales , Carcinoma de Células Escamosas/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/inmunología , Humanos , Interferón gamma/metabolismo , Interleucina-15/genética , Células Asesinas Naturales/efectos de los fármacos , Activación de Linfocitos , Ratones , Proteínas/genética , Receptores de Interleucina-15/genética , Proteínas Recombinantes de Fusión/genética , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Clin Cancer Res ; 24(8): 1891-1904, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29363526

RESUMEN

Purpose: mAbs are used to treat solid and hematologic malignancies and work in part through Fc receptors (FcRs) on natural killer cells (NK). However, FcR-mediated functions of NK cells from patients with cancer are significantly impaired. Identifying the mechanisms of this dysfunction and impaired response to mAb therapy could lead to combination therapies and enhance mAb therapy.Experimental Design: Cocultures of autologous NK cells and MDSC from patients with cancer were used to study the effect of myeloid-derived suppressor cells (MDSCs) on NK-cell FcR-mediated functions including antibody-dependent cellular cytotoxicity, cytokine production, and signal transduction in vitro Mouse breast cancer models were utilized to study the effect of MDSCs on antibody therapy in vivo and test the efficacy of combination therapies including a mAb and an MDSC-targeting agent.Results: MDSCs from patients with cancer were found to significantly inhibit NK-cell FcR-mediated functions including antibody-dependent cellular cytotoxicity, cytokine production, and signal transduction in a contact-independent manner. In addition, adoptive transfer of MDSCs abolished the efficacy of mAb therapy in a mouse model of pancreatic cancer. Inhibition of iNOS restored NK-cell functions and signal transduction. Finally, nonspecific elimination of MDSCs or inhibition of iNOS in vivo significantly improved the efficacy of mAb therapy in a mouse model of breast cancer.Conclusions: MDSCs antagonize NK-cell FcR-mediated function and signal transduction leading to impaired response to mAb therapy in part through nitric oxide production. Thus, elimination of MDSCs or inhibition of nitric oxide production offers a strategy to improve mAb therapy. Clin Cancer Res; 24(8); 1891-904. ©2018 AACR.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Óxido Nítrico/biosíntesis , Receptores Fc/metabolismo , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/farmacología , Línea Celular Tumoral , Citocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Femenino , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Oncoimmunology ; 5(9): e1214787, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27757311

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of early myeloid cells that accumulate in the blood and tumors of patients with cancer. MDSC play a critical role during tumor evasion and promote immune suppression through variety of mechanisms, such as the generation of reactive oxygen and nitrogen species (ROS and RNS) and cytokines. AMPactivated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that regulates energy homeostasis and metabolic stress. However, the role of AMPK in the regulation of MDSC function remains largely unexplored. This study was designed to investigate whether treatment of MDSC with OSU-53, a PPAR-inactive derivative that stimulates AMPK kinase, can modulate MDSC function. Our results demonstrate that OSU-53 treatment increases the phosphorylation of AMPK, significantly reduces nitric oxide production, inhibits MDSC migration, and reduces the levels of IL-6 in murine MDSC cell line (MSC2 cells). OSU53 treatment mitigated the immune suppressive functions of murine MDSC, promoting T-cell proliferation. Although OSU-53 had a modest effect on tumor growth in mice inoculated with EMT-6 cells, importantly, administration of OSU53 significantly (p < 0.05) reduced the levels of MDSC in the spleens and tumors. Furthermore, mouse MDSC from EMT-6 tumor-bearing mice and human MDSC isolated from melanoma patients treated with OSU-53 showed a significant reduction in the expression of immune suppressive genes iNOS and arginase. In summary, these results demonstrate a novel role of AMPK in the regulation of MDSC functions and provide a rationale of combining OSU-53 with immune checkpoint inhibitors to augment their response in cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA