Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nucl Med ; 65(2): 245-251, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38124163

RESUMEN

α-particle emitters are emerging as a potent modality for disseminated cancer therapy because of their high linear energy transfer and localized absorbed dose profile. Despite great interest and pharmaceutical development, there is scant information on the distribution of these agents at the scale of the α-particle pathlength. We sought to determine the distribution of clinically approved [223Ra]RaCl2 in bone metastatic castration-resistant prostate cancer at this resolution, for the first time to our knowledge, to inform activity distribution and dose at the near-cell scale. Methods: Biopsy specimens and blood were collected from 7 patients 24 h after administration. 223Ra activity in each sample was recorded, and the microstructure of biopsy specimens was analyzed by micro-CT. Quantitative autoradiography and histopathology were segmented and registered with an automated procedure. Activity distributions by tissue compartment and dosimetry calculations based on the MIRD formalism were performed. Results: We revealed the activity distribution differences across and within patient samples at the macro- and microscopic scales. Microdistribution analysis confirmed localized high-activity regions in a background of low-activity tissue. We evaluated heterogeneous α-particle emission distribution concentrated at bone-tissue interfaces and calculated spatially nonuniform absorbed-dose profiles. Conclusion: Primary patient data of radiopharmaceutical therapy distribution at the small scale revealed that 223Ra uptake is nonuniform. Dose estimates present both opportunities and challenges to enhance patient outcomes and are a first step toward personalized treatment approaches and improved understanding of α-particle radiopharmaceutical therapies.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Masculino , Humanos , Radiofármacos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Huesos/diagnóstico por imagen , Huesos/patología , Autorradiografía , Neoplasias Óseas/radioterapia , Neoplasias Óseas/secundario
2.
IEEE Trans Radiat Plasma Med Sci ; 7(1): 62-74, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37201111

RESUMEN

Single-photon emission-computed tomography (SPECT) provides a mechanism to estimate regional isotope uptake in lesions and at-risk organs after administration of α-particle-emitting radiopharmaceutical therapies (α-RPTs). However, this estimation task is challenging due to the complex emission spectra, the very low number of detected counts (~20 times lower than in conventional SPECT), the impact of stray-radiation-related noise at these low counts, and the multiple image-degrading processes in SPECT. The conventional reconstruction-based quantification methods are observed to be erroneous for α-RPT SPECT. To address these challenges, we developed a low-count quantitative SPECT (LC-QSPECT) method that directly estimates the regional activity uptake from the projection data (obviating the reconstruction step), compensates for stray-radiation-related noise, and accounts for the radioisotope and SPECT physics, including the isotope spectra, scatter, attenuation, and collimator-detector response, using a Monte Carlo-based approach. The method was validated in the context of 3-D SPECT with 223Ra, a commonly used radionuclide for α-RPT. Validation was performed using both realistic simulation studies, including a virtual clinical trial, and synthetic and 3-D-printed anthropomorphic physical-phantom studies. Across all studies, the LC-QSPECT method yielded reliable regional-uptake estimates and outperformed the conventional ordered subset expectation-maximization (OSEM)-based reconstruction and geometric transfer matrix (GTM)-based post-reconstruction partial-volume compensation methods. Furthermore, the method yielded reliable uptake across different lesion sizes, contrasts, and different levels of intralesion heterogeneity. Additionally, the variance of the estimated uptake approached the Cramér-Rao bound-defined theoretical limit. In conclusion, the proposed LC-QSPECT method demonstrated the ability to perform reliable quantification for α-RPT SPECT.

3.
J Nucl Med ; 64(7): 1062-1068, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142300

RESUMEN

227Th is a promising radioisotope for targeted α-particle therapy. It produces 5 α-particles through its decay, with the clinically approved 223Ra as its first daughter. There is an ample supply of 227Th, allowing for clinical use; however, the chemical challenges of chelating this large tetravalent f-block cation are considerable. Using the CD20-targeting antibody ofatumumab, we evaluated chelation of 227Th4+ for α-particle-emitting and radiotheranostic applications. Methods: We compared 4 bifunctional chelators for thorium radiopharmaceutical preparation: S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2-(4-isothicyanatobenzyl)-1,2,7,10,13-hexaazacyclooctadecane-1,4,7,10,13,16-hexaacetic acid (p-SCN-Bn-HEHA), p-isothiacyanatophenyl-1-hydroxy-2-oxopiperidine-desferrioxamine (DFOcyclo*-p-Phe-NCS), and macrocyclic 1,2-HOPO N-hydroxysuccinimide (L804-NHS). Immunoconstructs were evaluated for yield, purity, and stability in vitro and in vivo. Tumor targeting of the lead 227Th-labeled compound in vivo was performed in CD20-expressing models and compared with a companion 89Zr-labeled PET agent. Results: 227Th-labeled ofatumumab-chelator constructs were synthesized to a radiochemical purity of more than 95%, excepting HEHA. 227Th-HEHA-ofatumumab showed moderate in vitro stability. 227Th-DFOcyclo*-ofatumumab presented excellent 227Th labeling efficiency; however, high liver and spleen uptake was revealed in vivo, indicative of aggregation. 227Th-DOTA-ofatumumab labeled poorly, yielding no more than 5%, with low specific activity (0.08 GBq/g) and modest long-term in vitro stability (<80%). 227Th-L804-ofatumumab coordinated 227Th rapidly and efficiently at high yields, purity, and specific activity (8 GBq/g) and demonstrated extended stability. In vivo tumor targeting confirmed the utility of this chelator, and the diagnostic analog, 89Zr-L804-ofatumumab, showed organ distribution matching that of 227Th to delineate SU-DHL-6 tumors. Conclusion: Commercially available and novel chelators for 227Th showed a range of performances. The L804 chelator can be used with potent radiotheranostic capabilities for 89Zr/227Th quantitative imaging and α-particle therapy.


Asunto(s)
Linfoma , Radioinmunoterapia , Humanos , Radioinmunoterapia/métodos , Medicina de Precisión , Radioisótopos/uso terapéutico , Radioisótopos/química , Quelantes/química , Radiofármacos/uso terapéutico , Linfoma/patología , Línea Celular Tumoral , Circonio/química
4.
J Nucl Med ; 64(6): 924-931, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024304

RESUMEN

Immunotherapies that target the CD20 protein expressed on most non-Hodgkin lymphoma cells have improved clinical outcomes, but relapse is common. We prepared 225Ac-labeled anti-CD20 ofatumumab and evaluated its in vitro characteristics and therapeutic efficacy in a murine model of disseminated human lymphoma. Methods: 225Ac was chelated by DOTA-ofatumumab, and radiochemical yield, purity, immunoreactivity, stability, and chelate number were determined. In vitro cell killing of CD20-positive, human B-cell lymphoma Raji-Luc cells was assayed. Biodistribution was determined as percentage injected activity per gram (%IA/g) in mice with subcutaneous Raji-cell tumors (n = 4). [225Ac]Ac-ofatumumab biodistribution in C57BL/6N mice was performed to estimate projected human dosimetry. Therapeutic efficacy was tested in mice with systemically disseminated Raji-Luc cells, tracking survival, bioluminescence, and animal weight for a targeted 200 d, with single-dose therapy initiated 8, 12, or 16 d after cell injection, comparing no treatment, ofatumumab, and low (3.7 kBq/mouse) and high (9.25 kBq/mouse) doses of [225Ac]Ac-IgG and [225Ac]Ac-ofatumumab (n = 8-10/cohort). Results: Radiochemical yield and purity were 32% ± 9% and more than 95%, respectively. Specific activity was more than 5 MBq/mg. Immunoreactivity was preserved, and more than 90% of the 225Ac remained chelated after 10 d in serum. Raji-Luc cell killing in vitro was significant, specific, and dose-dependent. In tumor-bearing mice, [225Ac]Ac-ofatumumab displayed low liver (7 %IA/g) and high tumor (28 %IA/g) uptake. Dosimetry estimates indicated that bone marrow is likely the dose-limiting organ. When therapy was initiated 8 d after cell injection, untreated mice and mice treated with cold ofatumumab or low- or high-dose [225Ac]Ac-IgG showed indistinguishable median survivals of 20-24 d, with extensive cancer-cell burden before death. Low- and high-dose [225Ac]Ac-ofatumumab profoundly (P < 0.05) extended median survival to 190 d and more than 200 d (median not determinable), with 5 and 9 of 10 mice, respectively, surviving at study termination with no detectable cancer cells. Surviving mice treated with high-dose [225Ac]Ac-ofatumumab showed reduced weight gain versus naïve mice. When therapy was initiated 12 d, but not 16 d, after cell injection, high-dose [225Ac]Ac-ofatumumab significantly extended median survival to 40 d but was not curative. Conclusion: In an aggressive disseminated tumor model, [225Ac]Ac-ofatumumab was effective at cancer-cell killing and curative when administered 8 d after cell injection. [225Ac]Ac-ofatumumab has substantial potential for clinical translation as a next-generation therapeutic for treatment of patients with non-Hodgkin lymphoma.


Asunto(s)
Linfoma no Hodgkin , Linfoma , Humanos , Ratones , Animales , Distribución Tisular , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia , Linfoma/patología , Linfoma no Hodgkin/tratamiento farmacológico , Inmunoglobulina G , Radioinmunoterapia , Línea Celular Tumoral
5.
J Nucl Med ; 64(4): 542-548, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36357179

RESUMEN

Although immunotherapies that target CD20 on most non-Hodgkin lymphoma (NHL) cells have improved patient outcomes, current therapies are inadequate because many cases are, or become, refractory or undergo relapse. Here, we labelled the third-generation human anti-CD20 antibody ofatumumab with 177Lu, determined the in vitro characteristics of [177Lu]Lu-ofatumumab, estimated human dosimetry, and assayed tumor targeting and therapeutic efficacy in a murine model of disseminated NHL. Methods: CHX-A″-diethylenetriaminepentaacetic acid-[177Lu]Lu-ofatumumab was prepared. We evaluated radiochemical yield, purity, in vitro immunoreactivity, stability, (n = 7), affinity, and killing of CD20-expressing Raji cells (n = 3). Human dosimetry was estimated from biodistribution studies as percentage injected activity per gram using C57BL/6N mice. Tissue and organ biodistribution was determined in R2G2 immunodeficient mice with subcutaneous Raji-cell tumors. Therapy studies used R2G2 mice with disseminated human Raji-luc tumor cells (n = 10 mice/group). Four days after cell injection, the mice were left untreated or were treated with ofatumumab, 8.51 MBq of [177Lu]Lu-IgG, or 0.74 or 8.51 MBq of [177Lu]Lu-ofatumumab. Survival, weight, and bioluminescence were tracked. Results: Radiochemical yield was 93% ± 2%, radiochemical purity was 99% ± 1%, and specific activity was 401 ± 17 MBq/mg. Immunoreactivity was substantially preserved, and more than 75% of 177Lu remained chelated after 7 d in serum. [177Lu]Lu-ofatumumab specifically killed Raji-luc cells in vitro (P < 0.05). Dosimetry estimated that an effective dose for human administration is 0.36 mSv/MBq and that marrow may be the dose-limiting organ. Biodistribution in subcutaneous tumors 1, 3, and 7 d after [177Lu]Lu-ofatumumab injection was 11, 15, and 14 percentage injected activity per gram, respectively. In the therapy study, median survival of untreated mice was 19 d, not statistically different from mice treated with 8.51 MBq of [177Lu]Lu-IgG (25 d). Unlabeled ofatumumab increased survival to 46 d, similar to 0.74 MBq of [177Lu]Lu-ofatumumab (59 d), with both being superior to no treatment (P < 0.0003). Weight loss and increased tumor burden preceded death or killing of the animal for cause. In contrast, treatment with 8.51 MBq of [177Lu]Lu-ofatumumab dramatically increased median survival (>221 d), permitted weight gain, eliminated detectable tumors, and was curative in 9 of 10 mice. Conclusion: [177Lu]Lu-ofatumumab shows favorable in vitro characteristics, localizes to tumor, and demonstrates curative therapeutic efficacy in a disseminated lymphoma model, showing potential for clinical translation to treat NHL.


Asunto(s)
Linfoma , Radioinmunoterapia , Humanos , Ratones , Animales , Distribución Tisular , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia , Radiofármacos/uso terapéutico , Inmunoglobulina G , Lutecio/uso terapéutico , Línea Celular Tumoral
6.
Cancer Biother Radiopharm ; 38(1): 15-25, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36149725

RESUMEN

Background: The majority of radiopharmaceuticals for use in disease detection and targeted treatment undergo a single radioactive transition (decay) to reach a stable ground state. Complex emitters, which produce a series of daughter radionuclides, are emerging as novel radiopharmaceuticals. The need for validation of chemical and radiopurity with such agents using common quality control instrumentation is an area of active investigation. Here, we demonstrate novel methods to characterize 227Th and 223Ra. Materials and Methods: A radio-TLC scanner and a γ-counter, two common and widely accessible technologies, as well as a solid-state α-particle spectral imaging camera were evaluated for their ability to characterize and distinguish 227Th and 223Ra. We verified these results through purity evaluation of a novel 227Th-labeled protein construct. Results: The γ-counter and α-camera distinguished 227Th from 223Ra, enabling rapid and quantitative determination of radionuclidic purity. The radio-TLC showed limited ability to describe purity, although use under α-particle-specific settings enhanced resolution. All three methods were able to distinguish a pure from impure 227Th-labeled protein. Conclusions: The presented quality control evaluation for 227Th and 223Ra on three different instruments can be applied to both research and clinical settings as new alpha particle therapies are developed.


Asunto(s)
Radiofármacos , Radio (Elemento) , Humanos , Radiofármacos/uso terapéutico , Radiofármacos/química , Torio/química , Radioisótopos/uso terapéutico , Radioisótopos/química , Radio (Elemento)/uso terapéutico , Control de Calidad
7.
Cancer Biother Radiopharm ; 37(5): 355-363, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35695807

RESUMEN

Background: Alpha-particle-emitting radiotherapies are of great interest for the treatment of disseminated cancer. Actinium-225 (225Ac) produces four α-particles through its decay and is among the most attractive radionuclides for use in targeted radiotherapy applications. However, supply issues for this isotope have limited availability and increased cost for research and translation. Efforts have focused on accelerator-based methods that produce 225Ac in addition to long-lived 227Ac. Objective: The authors investigated the impact of 225Ac/227Ac material in the radiolabeling and radiopharmaceutical quality control evaluation of a DOTA chelate-conjugated peptide under good manufacturing practices. The authors use an automated module under identical conditions with either generator or accelerator-produced actinium radiolabeling. Methods: The authors have performed characterization of the radiolabeled products, including thin-layer chromatography, high-pressure liquid chromatography, gamma counting, and high-energy resolution gamma spectroscopy. Results: Peptide was radiolabeled and assessed at >95% radiochemical purity with high yields for generator produced 225Ac. The radiolabeling results produced material with subtle but detectable differences when using 225Ac/227Ac. Gamma spectroscopy was able to identify peptide initially labeled with 227Th, and at 100 d for quantification of 225Ac-bearing peptide. Conclusion: Peptides produced using 225Ac/227Ac material may be suitable for translation, but raise new issues that include processing times, logistics, and contaminant detection.


Asunto(s)
Actinio , Radiofármacos , Partículas alfa/uso terapéutico , Humanos , Control de Calidad , Radioquímica/métodos , Radiofármacos/uso terapéutico
8.
Inorg Chem ; 61(7): 3337-3350, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137587

RESUMEN

Uranium-230 is an α-emitting radionuclide with favorable properties for use in targeted α-therapy (TAT), a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To successfully implement this radionuclide for TAT, a bifunctional chelator that can stably bind uranium in vivo is required. To address this need, we investigated the acyclic ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox as uranium chelators. The stability constants of these ligands with UO22+ were measured via spectrophotometric titrations, revealing log ßML values that are greater than 18 and 26 for the "pa" and "hox" chelators, respectively, signifying that the resulting complexes are exceedingly stable. In addition, the UO22+ complexes were structurally characterized by NMR spectroscopy and X-ray crystallography. Crystallographic studies reveal that all six donor atoms of the four ligands span the equatorial plane of the UO22+ ion, giving rise to coordinatively saturated complexes that exclude solvent molecules. To further understand the enhanced thermodynamic stabilities of the "hox" chelators over the "pa" chelators, density functional theory (DFT) calculations were employed. The use of the quantum theory of atoms in molecules revealed that the extent of covalency between all four ligands and UO22+ was similar. Analysis of the DFT-computed ligand strain energy suggested that this factor was the major driving force for the higher thermodynamic stability of the "hox" ligands. To assess the suitability of these ligands for use with 230U TAT in vivo, their kinetic stabilities were probed by challenging the UO22+ complexes with the bone model hydroxyapatite (HAP) and human plasma. All four complexes were >95% stable in human plasma for 14 days, whereas in the presence of HAP, only the complexes of H2CHXdedpa and H2hox remained >80% intact over the same period. As a final validation of the suitability of these ligands for radiotherapy applications, the in vivo biodistribution of their UO22+ complexes was determined in mice in comparison to unchelated [UO2(NO3)2]. In contrast to [UO2(NO3)2], which displays significant bone uptake, all four ligand complexes do not accumulate in the skeletal system, indicating that they remain stable in vivo. Collectively, these studies suggest that the equatorial-spanning ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox are highly promising candidates for use in 230U TAT.


Asunto(s)
Quelantes
9.
Chem Sci ; 12(10): 3733-3742, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-34163647

RESUMEN

Targeted alpha therapy is an emerging strategy for the treatment of disseminated cancer. [223Ra]RaCl2 is the only clinically approved alpha particle-emitting drug, and it is used to treat castrate-resistant prostate cancer bone metastases, to which [223Ra]Ra2+ localizes. To specifically direct [223Ra]Ra2+ to non-osseous disease sites, chelation and conjugation to a cancer-targeting moiety is necessary. Although previous efforts to stably chelate [223Ra]Ra2+ for this purpose have had limited success, here we report a biologically stable radiocomplex with the 18-membered macrocyclic chelator macropa. Quantitative labeling of macropa with [223Ra]Ra2+ was accomplished within 5 min at room temperature with a radiolabeling efficiency of >95%, representing a significant advancement over conventional chelators such as DOTA and EDTA, which were unable to completely complex [223Ra]Ra2+ under these conditions. [223Ra][Ra(macropa)] was highly stable in human serum and exhibited dramatically reduced bone and spleen uptake in mice in comparison to bone-targeted [223Ra]RaCl2, signifying that [223Ra][Ra(macropa)] remains intact in vivo. Upon conjugation of macropa to a single amino acid ß-alanine as well as to the prostate-specific membrane antigen-targeting peptide DUPA, both constructs retained high affinity for 223Ra, complexing >95% of Ra2+ in solution. Furthermore, [223Ra][Ra(macropa-ß-alanine)] was rapidly cleared from mice and showed low 223Ra bone absorption, indicating that this conjugate is stable under biological conditions. Unexpectedly, this stability was lost upon conjugation of macropa to DUPA, which suggests a role of targeting vectors in complex stability in vivo for this system. Nonetheless, our successful demonstration of efficient radiolabeling of the ß-alanine conjugate with 223Ra and its subsequent stability in vivo establishes for the first time the possibility of delivering [223Ra]Ra2+ to metastases outside of the bone using functionalized chelators, marking a significant expansion of the therapeutic utility of this radiometal in the clinic.

10.
J Nucl Med ; 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837069

RESUMEN

Background: Radium-223 dichloride ([223Ra]RaCl2) is the first approved alpha particle-emitting therapy and is indicated for treatment of bone metastatic castrate resistant prostate cancer. Approximately half of the dose is absorbed into the gastrointestinal (GI) tract within minutes of administration, limiting disease-site uptake and contributing to toxicity. Here, we investigate the role of enteric ion channels and their modulation for improved therapeutic efficacy and reduced side effects. Methods: Utilizing primary human duodenal organoids (enteroids) as in vitro models of the functional GI epithelium, we found that Amiloride (ENaC blocker) and NS-1619 (K+ channel activator) presented significant effects in 223Ra membranal transport. The radioactive drug distribution was evaluated for lead combinations in vivo, and in osteosarcoma and prostate cancer models. Results: Amiloride shifted 223Ra uptake in vivo from the gut, to nearly double the uptake at sites of bone remodeling. Bone tumor growth inhibition with the combination as measured by bioluminescent and X-ray imaging was significantly greater than single agents alone, and the combination resulted in no weight loss. Conclusion: This combination of approved agents may be readily implemented as a clinical approach to improve outcomes of bone metastatic cancer patients with the benefit of ameliorated tolerability.

11.
Cancer Biother Radiopharm ; 35(7): 520-529, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32182119

RESUMEN

Objective: Dose optimization and pharmacokinetic evaluation of α-particle emitting radium-223 dichloride (223RaCl2) by planar γ-camera or single photon emission computed tomography (SPECT) imaging are hampered by the low photon abundance and injected activities. In this study, we demonstrate SPECT of 223Ra using phantoms and small animal in vivo models. Methods: Line phantoms and mice bearing 223Ra were imaged using a dedicated small animal SPECT by detecting the low-energy photon emissions from 223Ra. Localization of the therapeutic agent was verified by whole-body and whole-limb autoradiography and its radiobiological effect confirmed by immunofluorescence. Results: A state-of-the-art commercial small animal SPECT system equipped with a highly sensitive collimator enables collection of sufficient counts for three-dimensional reconstruction at reasonable administered activities and acquisition times. Line sources of 223Ra in both air and in a water scattering phantom gave a line spread function with a full-width-at-half-maximum of 1.45 mm. Early and late-phase imaging of the pharmacokinetics of the radiopharmaceutical were captured. Uptake at sites of active bone remodeling was correlated with DNA damage from the α particle emissions. Conclusions: This work demonstrates the capability to noninvasively define the distribution of 223RaCl2, a recently approved α-particle-emitting radionuclide. This approach allows quantitative assessment of 223Ra distribution and may assist radiation-dose optimization strategies to improve therapeutic response and ultimately to enable personalized treatment planning.


Asunto(s)
Huesos/diagnóstico por imagen , Radiofármacos/farmacocinética , Radio (Elemento)/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Autorradiografía/métodos , Neoplasias Óseas/radioterapia , Neoplasias Óseas/secundario , Huesos/efectos de la radiación , Humanos , Masculino , Ratones , Modelos Animales , Fantasmas de Imagen , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Radioisótopos/administración & dosificación , Radioisótopos/farmacocinética , Radiofármacos/administración & dosificación , Radio (Elemento)/administración & dosificación , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/instrumentación
12.
Prostate ; 79(6): 678-685, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30656716

RESUMEN

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is highly overexpressed in primary and metastatic prostate cancer (PCa). This has led to the development of radiopharmaceuticals for targeted imaging and therapy under current clinical evaluation. Despite this progress, the exact biological role of the protein in prostate cancer development and progression has not been fully elucidated. This is in part because the human PSMA and mouse PSMA (mPSMA) have different patterns of anatomical expression which confound study in the most widely utilized model organisms. Most notably, mPSMA is not expressed in the healthy murine prostate. Here, we reveal that mPSMA is highly upregulated in the prostate adenocarcinoma of the spontaneous Hi-Myc mouse model, a highly accurate and well characterized mouse model of prostate cancer development. Antibody detection and molecular imaging tools are used to confirm that mPSMA is expressed from early prostatic intraepithelial neoplasia (PIN) through adenocarcinoma.


Asunto(s)
Adenocarcinoma , Antígenos de Superficie/metabolismo , Descubrimiento de Drogas/métodos , Glutamato Carboxipeptidasa II/metabolismo , Inmunohistoquímica/métodos , Glicoproteínas de Membrana/metabolismo , Próstata , Neoplasias de la Próstata , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Imagen Molecular/métodos , Terapia Molecular Dirigida/métodos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Radiofármacos/farmacología
13.
Clin Cancer Res ; 25(2): 881-891, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30254080

RESUMEN

PURPOSE: The impact of androgen receptor (AR) activity in breast cancer biology is unclear. We characterized and tested a novel therapy to an AR-governed target in breast cancer.Experimental Design: We evaluated the expression of prototypical AR gene products human kallikrein 2 (hK2) and PSA in breast cancer models. We screened 13 well-characterized breast cancer cell lines for hK2 and PSA production upon in vitro hormone stimulation by testosterone [dihydrotestosterone (DHT)]. AR-positive lines were further evaluated by exposure to estrogen (17ß-Estradiol) and the synthetic progestin D-Norgestrel. We then evaluated an anti-hK2-targeted radiotherapy platform (hu11B6), labeled with alpha (α)-particle emitting Actinium-225, to specifically treat AR-expressing breast cancer xenografts under hormone stimulation. RESULTS: D-Norgestrel and DHT activated the AR pathway, while 17ß-Estradiol did not. Competitive binding for AR protein showed similar affinity between DHT and D-Norgestrel, indicating direct AR-ligand interaction. In vivo production of hK2 was sufficient to achieve site-specific delivery of therapeutic radionuclide to tumor tissue at >20-fold over background muscle uptake; effecting long-term local tumor control. CONCLUSIONS: [225Ac]hu11B6 targeted radiotherapy was potentiated by DHT and by D-Norgestrel in murine xenograft models of breast cancer. AR activity in breast cancer correlates with kallikrein-related peptidase-2 and can be activated by D-Norgestrel, a common contraceptive, and AR induction can be harnessed for hK2-targeted breast cancer α-emitter radiotherapy.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias de la Mama/metabolismo , Inmunoconjugados/administración & dosificación , Receptores Androgénicos/metabolismo , Transducción de Señal , Animales , Biomarcadores de Tumor , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Femenino , Hexoquinasa/antagonistas & inhibidores , Humanos , Inmunoconjugados/farmacocinética , Ratones , Terapia Molecular Dirigida , Radioinmunoterapia , Radiometría , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nucl Med Biol ; 62-63: 1-8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29800797

RESUMEN

INTRODUCTION: Radium-223 dichloride is the first alpha-particle emitting therapeutic agent approved by FDA and EMA for bone metastatic castration-resistant prostate cancer. We studied its age-dependent biodistribution in mice, and compared it with [99mTc]Tc-MDP and [18F]NaF aiming to identify a potential imaging surrogate to predict [223Ra]RaCl2 whole-body localization. METHODS: Male C57Bl/6 mice dosed with [223Ra]RaCl2 were sacrificed at different time points to explore [223Ra]RaCl2 whole-body distribution. In another experiment, mice at different ages were dosed with [223Ra]RaCl2 to evaluate the aging impact. Finally, [99mTc]Tc-MDP and [18F]NaF were administered to mice, and we compared their biodistributions with [223Ra]RaCl2. Detailed micro-localization of each tracer was visualized using autoradiography and histochemical staining. RESULTS: [223Ra]RaCl2 uptake in bone was rapid and stable. We observed persistent localization at bone epiphyses, as well as the red pulp of the spleen, while its uptake in most soft tissues cleared within 24 h. [223Ra]RaCl2 distribution in soft tissues is similar in all age groups tested, while bone activity significantly decreased with aging. Although the diagnostic tracers cleared much faster from soft tissues than the therapeutic radionuclide, [99mTc]Tc-MDP and [18F]NaF both co-localized with [223Ra]RaCl2 in the skeletal compartment. CONCLUSIONS: Radium-223 localization to the bone is dependent on age-varying factors, which implies that radium-223 dosimetry should take patient age into account. [99mTc]Tc-MDP shows a different biodistribution from [223Ra]RaCl2, both in soft tissues and in bone. [18F]NaF presents a high similarity with [223Ra]RaCl2 in skeletal uptake, which validates the potential of [18F]NaF as an imaging surrogate to predict radium-223 radiotherapeutic distribution in bone.


Asunto(s)
Envejecimiento/metabolismo , Imagen Molecular , Radio (Elemento)/farmacocinética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Radioisótopos/química , Radioisótopos/farmacocinética , Radio (Elemento)/química , Distribución Tisular
15.
Nat Commun ; 9(1): 1629, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691406

RESUMEN

Human kallikrein peptidase 2 (hK2) is a prostate specific enzyme whose expression is governed by the androgen receptor (AR). AR is the central oncogenic driver of prostate cancer (PCa) and is also a key regulator of DNA repair in cancer. We report an innovative therapeutic strategy that exploits the hormone-DNA repair circuit to enable molecularly-specific alpha particle irradiation of PCa. Alpha-particle irradiation of PCa is prompted by molecularly specific-targeting and internalization of the humanized monoclonal antibody hu11B6 targeting hK2 and further accelerated by inherent DNA-repair that up-regulate hK2 (KLK2) expression in vivo. hu11B6 demonstrates exquisite targeting specificity for KLK2. A single administration of actinium-225 labeled hu11B6 eradicates disease and significantly prolongs survival in animal models. DNA damage arising from alpha particle irradiation induces AR and subsequently KLK2, generating a unique feed-forward mechanism, which increases binding of hu11B6. Imaging data in nonhuman primates support the possibility of utilizing hu11B6 in man.


Asunto(s)
Partículas alfa/uso terapéutico , Neoplasias de la Próstata/radioterapia , Receptores Androgénicos/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Calicreínas de Tejido/genética , Calicreínas de Tejido/metabolismo
16.
J Biomed Opt ; 22(4): 45006, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28394000

RESUMEN

Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.


Asunto(s)
Colorantes Fluorescentes/química , Potenciales de la Membrana , Microscopía Fluorescente , Acústica , Algoritmos , Animales , Encéfalo/fisiopatología , Carbocianinas/química , Membrana Celular/efectos de los fármacos , Humanos , Lípidos de la Membrana/química , Neuronas/efectos de los fármacos , Fantasmas de Imagen , Técnicas Fotoacústicas , Fotones , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta , Valinomicina/farmacología
17.
Appl Radiat Isot ; 119: 36-42, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27835737

RESUMEN

The alpha particle emitter Radium-223 dichloride (223RaCl2) has recently been approved for treatment of late-stage bone metastatic prostate cancer. There is considerable interest in studying this new agent outside of the clinical setting, however the supply of 223Ra is limited and expensive. We have engineered a 223Ra microgenerator using traces of 227Ac previously generated from cyclotron-produced 225Ac. Radiochemically pure 223RaCl2 was made, characterized, evaluated in vivo, and the source was recovered in high yield for regeneration of the microgenerator.

18.
Sci Transl Med ; 8(367): 367ra167, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27903863

RESUMEN

Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. Understanding this resistance is confounded by a lack of noninvasive means to assess AR activity in vivo. We report intracellular accumulation of a secreted antigen-targeted antibody (SATA) that can be used to characterize disease, guide therapy, and monitor response. AR-regulated human kallikrein-related peptidase 2 (free hK2) is a prostate tissue-specific antigen produced in prostate cancer and androgen-stimulated breast cancer cells. Fluorescent and radio conjugates of 11B6, an antibody targeting free hK2, are internalized and noninvasively report AR pathway activity in metastatic and genetically engineered models of cancer development and treatment. Uptake is mediated by a mechanism involving the neonatal Fc receptor. Humanized 11B6, which has undergone toxicological tests in nonhuman primates, has the potential to improve patient management in these cancers. Furthermore, cell-specific SATA uptake may have a broader use for molecularly guided diagnosis and therapy in other cancers.


Asunto(s)
Anticuerpos/química , Neoplasias Óseas/diagnóstico por imagen , Antígenos de Histocompatibilidad Clase I/química , Neoplasias de la Próstata/diagnóstico por imagen , Receptores Androgénicos/química , Receptores Fc/química , Calicreínas de Tejido/química , Adenocarcinoma/diagnóstico por imagen , Animales , Neoplasias Óseas/secundario , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Fenotipo , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
19.
Bone Res ; 4: 16004, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27088042

RESUMEN

Bone formation and remodeling occurs throughout life and requires the sustained activity of osteoblasts and osteoclasts, particularly during periods of rapid bone growth. Despite increasing evidence linking bone cell activity to global energy homeostasis, little is known about the relative energy requirements or substrate utilization of bone cells. In these studies, we measured the uptake and distribution of glucose in the skeleton in vivo using positron-emitting (18)F-fluorodeoxyglucose ([(18)F]-FDG) and non-invasive, high-resolution positron emission tomography/computed tomography (PET/CT) imaging and ex vivo autoradiography. Assessment of [(18)F]-FDG uptake demonstrated that relative to other tissues bone accumulated a significant fraction of the total dose of the glucose analog. Skeletal accumulation was greatest in young mice undergoing the rapid bone formation that characterizes early development. PET/CT imaging revealed that [(18)F]-FDG uptake was greatest in the epiphyseal and metaphyseal regions of long bones, which accords with the increased osteoblast numbers and activity at this skeletal site. Insulin administration significantly increased skeletal accumulation of [(18)F]-FDG, while uptake was reduced in mice lacking the insulin receptor specifically in osteoblasts or fed a high-fat diet. Our results indicated that the skeleton is a site of significant glucose uptake and that its consumption by bone cells is subject to regulation by insulin and disturbances in whole-body metabolism.

20.
J Natl Cancer Inst ; 108(5)2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26683407

RESUMEN

BACKGROUND: Bone-metastatic, castration-resistant prostate cancer (bmCRPC) represents a lethal stage of the most common noncutaneous cancer in men. The recent introduction of Radium-223 dichloride, a bone-seeking alpha particle (α)-emitting radiopharmaceutical, demonstrates statistically significant survival benefit and palliative effect for bmCRPC patients. Clinical results have established safety and efficacy, yet questions remain regarding pharmacodynamics and dosing for optimized patient benefit. METHODS: We elucidated the biodistribution of (223)Ra as well as interaction with the bone and tumor compartments in skeletally mature mice (C57Bl/6 and CD-1, n = 3-6) and metastasis models (LNCaP and PC3, n = 4). Differences in uptake were evaluated by µCT and histological investigation. Novel techniques were leveraged on whole-mount undecalcified cryosections to determine microdistribution of Radium-223. All statistical tests were two-sided. RESULTS: (223)Ra uptake in the bones (>30% injected activity per gram) at 24 hours was also accompanied by non-negligible remnant activity in the kidney (2.33% ± 0.36%), intestines (5.73% ± 2.04%), and spleen (10.5% ± 5.9%) Skeletal accumulation across strains did not correspond with bone volume or surface area but instead to local blood vessel density (P = .04). Microdistribution analysis by autoradiography and α camera revealed targeting of the ossifying surfaces adjacent to the epiphyseal growth plate. In models of PCa metastasis, radioactivity does not localize directly within tumors but instead at the apposite bone surface. Osteoblastic and lytic lesions display similar intensity, which is comparable with uptake at sites of normal bone remodeling. CONCLUSIONS: Profiling the macro- and microdistribution of (223)Ra in healthy and diseased models has important implications to guide precision application of this emerging α-therapy approach for bmCRPC and other bone metastastic diseases.


Asunto(s)
Partículas alfa , Antineoplásicos/farmacocinética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Radio (Elemento)/farmacocinética , Microambiente Tumoral , Irradiación Corporal Total , Partículas alfa/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Autorradiografía , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Radioisótopos/administración & dosificación , Radioisótopos/farmacocinética , Radio (Elemento)/administración & dosificación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...