Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Pharmaceutics ; 16(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675230

RESUMEN

Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.

2.
Brain Sci ; 13(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979315

RESUMEN

Suicide, a global health burden, represents the 17th leading cause of death worldwide (1.3%), but the 4th among young people aged between 15 and 29 years of age, according to World Health Organization (WHO), 2019. Suicidal behaviour is a complex, multi-factorial, polygenic and independent mental health problem caused by a combination of alterations and dysfunctions of several biological pathways and disruption of normal mechanisms in brain regions that remain poorly understood and need further investigation to be deciphered. Suicide complexity and unpredictability gained international interest as a field of research. Several studies have been conducted at the neuropathological, inflammatory, genetic, and molecular levels to uncover the triggers behind suicidal behaviour and develop convenient and effective therapeutic or at least preventive procedures. This review aims to summarise and focus on current knowledge of diverse biological pathways involved in the neurobiology of suicidal behaviour, and briefly highlights future potential therapeutic pathways to prevent or even treat this significant public health problem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...