Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 35(1): 41-55, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953472

RESUMEN

SIGNIFICANCE STATEMENT: Long noncoding RNAs (lncRNAs) are a class of nonprotein coding RNAs with pivotal functions in development and disease. They have emerged as an exciting new drug target category for many common conditions. However, the role of lncRNAs in autosomal dominant polycystic kidney disease (ADPKD) has been understudied. This study provides evidence implicating a lncRNA in the pathogenesis of ADPKD. We report that Hoxb3os is downregulated in ADPKD and regulates mammalian target of rapamycin (mTOR)/Akt pathway in the in vivo mouse kidney. Ablating the expression of Hoxb3os in mouse polycystic kidney disease (PKD) activated mTOR complex 2 (mTORC2) signaling and exacerbated the cystic phenotype. The results from our study provide genetic proof of concept for future studies that focus on targeting lncRNAs as a treatment option in PKD. BACKGROUND: ADPKD is a monogenic disorder characterized by the formation of kidney cysts and is primarily caused by mutations in two genes, PKD1 and PKD2 . METHODS: In this study, we investigated the role of lncRNA Hoxb3os in ADPKD by ablating its expression in the mouse. RESULTS: Hoxb3os -null mice were viable and had grossly normal kidney morphology but displayed activation of mTOR/Akt signaling and subsequent increase in kidney cell proliferation. To determine the role of Hoxb3os in cystogenesis, we crossed the Hoxb3os -null mouse to two orthologous Pkd1 mouse models: Pkhd1/Cre; Pkd1F/F (rapid cyst progression) and Pkd1RC/RC (slow cyst progression). Ablation of Hoxb3os exacerbated cyst growth in both models. To gain insight into the mechanism whereby Hoxb3os inhibition promotes cystogenesis, we performed western blot analysis of mTOR/Akt pathway between Pkd1 single-knockout and Pkd1 - Hoxb3os double-knockout (DKO) mice. Compared with single-knockout, DKO mice presented with enhanced levels of total and phosphorylated Rictor. This was accompanied by increased phosphorylation of Akt at Ser 473 , a known mTORC2 effector site. Physiologically, kidneys from DKO mice displayed between 50% and 60% increase in cell proliferation and cyst number. CONCLUSIONS: The results from this study indicate that ablation of Hoxb3os in mouse PKD exacerbates cystogenesis and dysregulates mTORC2.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , ARN Largo no Codificante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Riñón/patología , Serina-Treonina Quinasas TOR/metabolismo , Ratones Noqueados , Sirolimus/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Quistes/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Modelos Animales de Enfermedad , Mamíferos/genética , Mamíferos/metabolismo
2.
Am J Physiol Renal Physiol ; 323(3): F335-F348, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35862648

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder characterized by the formation of kidney cysts that originate from the epithelial tubules of the nephron and primarily results from mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2). The metanephric organ culture (MOC) is an ex vivo system in which explanted embryonic kidneys undergo tubular differentiation and kidney development. MOC has been previously used to study polycystic kidney disease as treatment with 8-bromo-cAMP induces the formation of kidney cysts. However, the inefficiency of manipulating gene expression in MOC has limited its utility for identifying genes and pathways that are involved in cystogenesis. Here, we used a lentivirus and three serotypes of self-complementary adeno-associated viral (scAAV) plasmids that express green fluorescent protein and found that scAAV serotype D/J transduces the epithelial compartment of MOC at an efficiency of 68%. We used scAAV/DJ to deliver shRNA to knockdown Pvt1, a long noncoding RNA, which was upregulated in kidneys from Pkd1 and Pkd2 mutant mice and humans with ADPKD. shRNA delivery by scAAV/DJ downregulated expression of Pvt1 by 45% and reduced the cyst index by 53% in wild-type MOCs and 32% in Pkd1-null MOCs. Knockdown of Pvt1 decreased the level of c-MYC protein by 60% without affecting Myc mRNA, indicating that Pvt1 regulation of c-MYC was posttranscriptional. These results identify Pvt1 as a long noncoding RNA that modulates cyst progression in MOC.NEW & NOTEWORTHY This study identified scAAV/DJ as effective in transducing epithelial cells of the metanephric organ culture (MOC). We used scAAV/DJ shRNA to knockdown Pvt1 in cystic MOCs derived from Pkd1-null embryos. Downregulation of Pvt1 reduced cyst growth and decreased levels of c-MYC protein. These data suggest that suppression of Pvt1 activity in autosomal dominant polycystic kidney disease might reduce cyst growth.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , ARN Largo no Codificante , Animales , Quistes/genética , Quistes/metabolismo , Humanos , Riñón/metabolismo , Ratones , Técnicas de Cultivo de Órganos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
3.
JCI Insight ; 5(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182218

RESUMEN

Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.


Asunto(s)
MicroARNs/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Transducción de Señal , Animales , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Transgénicos , MicroARNs/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología
4.
Biochim Biophys Acta Gene Regul Mech ; 1863(4): 194449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31751821

RESUMEN

The mechanistic target of rapamycin (mTOR) is a major signaling hub that coordinates cellular and organismal responses, such as cell growth, proliferation, apoptosis, and metabolism. Dysregulation of mTOR signaling occurs in many human diseases, and there are significant ongoing efforts to pharmacologically target this pathway. Long noncoding RNAs (lncRNA), defined by a length > 200 nucleotides and absence of a long open-reading-frame, are a class of non-protein-coding RNAs. Mutations and dysregulations of lncRNAs are directly linked to the development and progression of many diseases, including cancer, diabetes, and neurologic disorders. Recent findings reveal diverse functions for lncRNA that include transcriptional regulation, organization of nuclear domains, and regulation of proteins or RNA molecules. Despite considerable development in our understanding of lncRNA over the past decade, only a fraction of annotated lncRNAs has been examined for biological function. In addition, lncRNAs have emerged as therapeutic targets due to their ability to modulate multiple pathways, including mTOR signaling. This review will provide an up-to-date summary of lncRNAs that are involved in regulating mTOR pathway.


Asunto(s)
ARN Largo no Codificante/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Oligonucleótidos Antisentido
5.
J Am Soc Nephrol ; 29(10): 2493-2509, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097458

RESUMEN

BACKGROUND: Mutation of HNF1B, the gene encoding transcription factor HNF-1ß, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1ß has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS: To explore the mechanism of fibrosis, we created HNF-1ß-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1ß-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1ß mutant mice. RESULTS: The HNF-1ß-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1ß directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1ß mutant cells. Kidneys from HNF-1ß mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1ß mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1ß mutant epithelial cells secrete high levels of TGF-ß ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS: Ablation of HNF-1ß in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-ß signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.


Asunto(s)
Gota/genética , Gota/patología , Factor Nuclear 1-beta del Hepatocito/genética , Hiperuricemia/genética , Hiperuricemia/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Animales , Línea Celular , Linaje de la Célula/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Fibrosis , Genes Dominantes , Gota/metabolismo , Factor Nuclear 1-beta del Hepatocito/deficiencia , Factor Nuclear 1-beta del Hepatocito/metabolismo , Humanos , Hiperuricemia/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/deficiencia , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
6.
J Biol Chem ; 293(24): 9388-9398, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29716997

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease that is characterized by the accumulation of numerous fluid-filled cysts in the kidney. ADPKD is primarily caused by mutations in two genes, PKD1 and PKD2 Long noncoding RNAs (lncRNA), defined by a length >200 nucleotides and absence of a long ORF, have recently emerged as epigenetic regulators of development and disease; however, their involvement in PKD has not been explored previously. Here, we performed deep RNA-Seq to identify lncRNAs that are dysregulated in two orthologous mouse models of ADPKD (kidney-specific Pkd1 and Pkd2 mutant mice). We identified a kidney-specific, evolutionarily conserved lncRNA called Hoxb3os that was down-regulated in cystic kidneys from Pkd1 and Pkd2 mutant mice. The human ortholog HOXB3-AS1 was down-regulated in cystic kidneys from ADPKD patients. Hoxb3os was highly expressed in renal tubules in adult WT mice, whereas its expression was lost in the cyst epithelium of mutant mice. To investigate the function of Hoxb3os, we utilized CRISPR/Cas9 to knock out its expression in mIMCD3 cells. Deletion of Hoxb3os resulted in increased phosphorylation of mTOR and its downstream targets, including p70 S6 kinase, ribosomal protein S6, and the translation repressor 4E-BP1. Consistent with activation of mTORC1 signaling, Hoxb3os mutant cells displayed increased mitochondrial respiration. The Hoxb3os mutant phenotype was partially rescued upon re-expression of Hoxb3os in knockout cells. These findings identify Hoxb3os as a novel lncRNA that is down-regulated in ADPKD and regulates mTOR signaling and mitochondrial respiration.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , ARN Largo no Codificante/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética
7.
Am J Physiol Renal Physiol ; 315(1): F27-F35, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29561186

RESUMEN

Mutations in hepatocyte nuclear factor 1ß (HNF1ß) cause autosomal dominant tubulointerstitial kidney disease (ADTKD-HNF1ß), and patients tend to develop renal cysts, maturity-onset diabetes of the young (MODY), and suffer from electrolyte disturbances, including hypomagnesemia, hypokalemia, and hypocalciuria. Previous HNF1ß research focused on the renal distal convoluted tubule (DCT) to elucidate the ADTKD-HNF1ß electrolyte phenotype, although 70% of Mg2+ is reabsorbed in the thick ascending limb of Henle's loop (TAL). An important regulator of Mg2+ reabsorption in the TAL is the calcium-sensing receptor (CaSR). This study used several methods to elucidate the role of HNF1ß in electrolyte reabsorption in the TAL. HNF1ß ChIP-seq data revealed a conserved HNF1ß binding site in the second intron of the CaSR gene. Luciferase-promoter assays displayed a 5.8-fold increase in CaSR expression when HNF1ß was present. Expression of the HNF1ß p.Lys156Glu mutant, which prevents DNA binding, abolished CaSR expression. Hnf1ß knockdown in an immortalized mouse kidney TAL cell line (MKTAL) reduced expression of the CaSR and Cldn14 (claudin 14) by 56% and 48%, respectively, while Cldn10b expression was upregulated 5.0-fold. These results were confirmed in a kidney-specific HNF1ß knockout mouse, which exhibited downregulation of the Casr by 81%. Cldn19 and Cldn10b expression levels were also decreased by 37% and 83%, respectively, whereas Cldn3 was upregulated by 4.6-fold. In conclusion, HNF1ß is a transcriptional activator of the CaSR. Consequently, patients with HNF1ß mutations may have reduced CaSR activity in the kidney, which could explain cyst progression and hyperabsorption of Ca2+ and Mg2+ in the TAL resulting in hypocalciuria.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito/metabolismo , Asa de la Nefrona/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Claudinas/genética , Claudinas/metabolismo , Femenino , Células HEK293 , Factor Nuclear 1-beta del Hepatocito/deficiencia , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Magnesio/metabolismo , Masculino , Ratones Noqueados , Regiones Promotoras Genéticas , Unión Proteica , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Receptores Acoplados a Proteínas G/genética , Reabsorción Renal , Transcripción Genética , Activación Transcripcional
8.
Kidney Int ; 92(5): 1145-1156, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28577853

RESUMEN

Hepatocyte nuclear factor 1 homeobox B (HNF1ß) is an essential transcription factor for the development and functioning of the kidney. Mutations in HNF1ß cause autosomal dominant tubulointerstitial kidney disease characterized by renal cysts and maturity-onset diabetes of the young (MODY). Moreover, these patients suffer from a severe electrolyte phenotype consisting of hypomagnesemia and hypokalemia. Until now, genes that are regulated by HNF1ß are only partially known and do not fully explain the phenotype of the patients. Therefore, we performed chIP-seq in the immortalized mouse kidney cell line mpkDCT to identify HNF1ß binding sites on a genome-wide scale. In total 7,421 HNF1ß-binding sites were identified, including several genes involved in electrolyte transport and diabetes. A highly specific and conserved HNF1ß site was identified in the promoter of Kcnj16 that encodes the potassium channel Kir5.1. Luciferase-promoter assays showed a 2.2-fold increase in Kcnj16 expression when HNF1ß was present. Expression of the Hnf1ß p.Lys156Glu mutant, previously identified in a patient with autosomal dominant tubulointerstitial kidney disease, did not activate Kcnj16 expression. Knockdown of Hnf1ß in mpkDCT cells significantly reduced the appearance of Kcnj16 (Kir5.1) and Kcnj10 (Kir4.1) by 38% and 37%, respectively. These results were confirmed in a HNF1ß renal knockout mouse which exhibited downregulation of Kcnj16, Kcnj10 and Slc12a3 transcripts in the kidney by 78%, 83% and 76%, respectively, compared to HNF1ß wild-type mice. Thus, HNF1ß is a transcriptional activator of Kcnj16. Hence, patients with HNF1ß mutations may have reduced Kir5.1 activity in the kidney, resulting in hypokalemia and hypomagnesemia.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito/genética , Hipopotasemia/genética , Nefritis Intersticial/genética , Canales de Potasio de Rectificación Interna/genética , Activación Transcripcional/genética , Animales , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Células HEK293 , Factor Nuclear 1-beta del Hepatocito/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hipopotasemia/sangre , Riñón/metabolismo , Magnesio/sangre , Ratones , Ratones Noqueados , Mutación , Fenotipo , Potasio/sangre , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Regiones Promotoras Genéticas/genética
9.
J Am Soc Nephrol ; 28(10): 2887-2900, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28507058

RESUMEN

The transcription factor hepatocyte nuclear factor-1ß (HNF-1ß) is essential for normal kidney development and function. Inactivation of HNF-1ß in mouse kidney tubules leads to early-onset cyst formation and postnatal lethality. Here, we used Pkhd1/Cre mice to delete HNF-1ß specifically in renal collecting ducts (CDs). CD-specific HNF-1ß mutant mice survived long term and developed slowly progressive cystic kidney disease, renal fibrosis, and hydronephrosis. Compared with wild-type littermates, HNF-1ß mutant mice exhibited polyuria and polydipsia. Before the development of significant renal structural abnormalities, mutant mice exhibited low urine osmolality at baseline and after water restriction and administration of desmopressin. However, mutant and wild-type mice had similar plasma vasopressin and solute excretion levels. HNF-1ß mutant kidneys showed increased expression of aquaporin-2 mRNA but mislocalized expression of aquaporin-2 protein in the cytoplasm of CD cells. Mutant kidneys also had decreased expression of the UT-A urea transporter and collectrin, which is involved in apical membrane vesicle trafficking. Treatment of HNF-1ß mutant mIMCD3 cells with hypertonic NaCl inhibited the induction of osmoregulated genes, including Nr1h4, which encodes the transcription factor FXR that is required for maximal urinary concentration. Chromatin immunoprecipitation and sequencing experiments revealed HNF-1ß binding to the Nr1h4 promoter in wild-type kidneys, and immunoblot analysis revealed downregulated expression of FXR in HNF-1ß mutant kidneys. These findings reveal a novel role of HNF-1ß in osmoregulation and identify multiple mechanisms, whereby mutations of HNF-1ß produce defects in urinary concentration.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito/fisiología , Túbulos Renales Colectores/fisiología , Animales , Línea Celular , Femenino , Regulación de la Expresión Génica , Masculino , Ratones Transgénicos , Poliuria/genética , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Orina
10.
Nat Commun ; 8: 14395, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205547

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent genetic cause of renal failure. Here we identify miR-17 as a target for the treatment of ADPKD. We report that miR-17 is induced in kidney cysts of mouse and human ADPKD. Genetic deletion of the miR-17∼92 cluster inhibits cyst proliferation and PKD progression in four orthologous, including two long-lived, mouse models of ADPKD. Anti-miR-17 treatment attenuates cyst growth in short-term and long-term PKD mouse models. miR-17 inhibition also suppresses proliferation and cyst growth of primary ADPKD cysts cultures derived from multiple human donors. Mechanistically, c-Myc upregulates miR-17∼92 in cystic kidneys, which in turn aggravates cyst growth by inhibiting oxidative phosphorylation and stimulating proliferation through direct repression of Pparα. Thus, miR-17 family is a promising drug target for ADPKD, and miR-17-mediated inhibition of mitochondrial metabolism represents a potential new mechanism for ADPKD progression.


Asunto(s)
MicroARNs/metabolismo , Mitocondrias/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Fosforilación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/terapia , Regulación hacia Arriba
11.
J Am Soc Nephrol ; 27(8): 2319-30, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26677864

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), one of the most common monogenetic disorders, is characterized by kidney failure caused by bilateral renal cyst growth. MicroRNAs (miRs) have been implicated in numerous diseases, but the role of these noncoding RNAs in ADPKD pathogenesis is still poorly defined. Here, we investigated the role of miR-21, an oncogenic miR, in kidney cyst growth. We found that transcriptional activation of miR-21 is a common feature of murine PKD. Furthermore, compared with renal tubules from kidney samples of normal controls, cysts in kidney samples from patients with ADPKD had increased levels of miR-21. cAMP signaling, a key pathogenic pathway in PKD, transactivated miR-21 promoter in kidney cells and promoted miR-21 expression in cystic kidneys of mice. Genetic deletion of miR-21 attenuated cyst burden, reduced kidney injury, and improved survival of an orthologous model of ADPKD. RNA sequencing analysis and additional in vivo assays showed that miR-21 inhibits apoptosis of cyst epithelial cells, likely through direct repression of its target gene programmed cell death 4 Thus, miR-21 functions downstream of the cAMP pathway and promotes disease progression in experimental PKD. Our results suggest that inhibiting miR-21 is a potential new therapeutic approach to slow cyst growth in PKD.


Asunto(s)
MicroARNs/fisiología , Riñón Poliquístico Autosómico Dominante/etiología , Riñón Poliquístico Autosómico Dominante/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Índice de Severidad de la Enfermedad
12.
J Am Soc Nephrol ; 27(8): 2408-21, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26712526

RESUMEN

HNF-1ß is a tissue-specific transcription factor that is expressed in the kidney and other epithelial organs. Humans with mutations in HNF-1ß develop kidney cysts, and HNF-1ß regulates the transcription of several cystic disease genes. However, the complete spectrum of HNF-1ß-regulated genes and pathways is not known. Here, using chromatin immunoprecipitation/next generation sequencing and gene expression profiling, we identified 1545 protein-coding genes that are directly regulated by HNF-1ß in murine kidney epithelial cells. Pathway analysis predicted that HNF-1ß regulates cholesterol metabolism. Expression of dominant negative mutant HNF-1ß or kidney-specific inactivation of HNF-1ß decreased the expression of genes that are essential for cholesterol synthesis, including sterol regulatory element binding factor 2 (Srebf2) and 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr). HNF-1ß mutant cells also expressed lower levels of cholesterol biosynthetic intermediates and had a lower rate of cholesterol synthesis than control cells. Additionally, depletion of cholesterol in the culture medium mitigated the inhibitory effects of mutant HNF-1ß on the proteins encoded by Srebf2 and Hmgcr, and HNF-1ß directly controlled the renal epithelial expression of proprotein convertase subtilisin-like kexin type 9, a key regulator of cholesterol uptake. These findings reveal a novel role of HNF-1ß in a transcriptional network that regulates intrarenal cholesterol metabolism.


Asunto(s)
Colesterol/metabolismo , Factor Nuclear 1-beta del Hepatocito/fisiología , Riñón/metabolismo , Animales , Colesterol/genética , Ratones
13.
J Biol Chem ; 290(41): 24793-805, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26292219

RESUMEN

The transcription factor hepatocyte nuclear factor-1ß (HNF-1ß) regulates tissue-specific gene expression in the kidney and other epithelial organs. Mutations of HNF-1ß produce kidney cysts, and previous studies have shown that HNF-1ß regulates the transcription of cystic disease genes, including Pkd2 and Pkhd1. Here, we combined chromatin immunoprecipitation and next-generation sequencing (ChIP-Seq) with microarray analysis to identify microRNAs (miRNAs) that are directly regulated by HNF-1ß in renal epithelial cells. These studies identified members of the epithelial-specific miR-200 family (miR-200b/200a/429) as novel transcriptional targets of HNF-1ß. HNF-1ß binds to two evolutionarily conserved sites located 28 kb upstream to miR-200b. Luciferase reporter assays showed that the HNF-1ß binding sites were located within a promoter that was active in renal epithelial cells. Mutations of the HNF-1ß binding sites abolished promoter activity. RT-PCR analysis revealed that a long noncoding RNA (lncRNA) is transcribed from the promoter and encodes the miR-200 cluster. Inhibition of the lncRNA with siRNAs decreased the levels of miR-200 but did not affect expression of the Ttll10 host gene. The expression of the lncRNA and miR-200 was decreased in kidneys from HNF-1ß knock-out mice and renal epithelial cells expressing dominant-negative mutant HNF-1ß. The expression of miR-200 targets, Zeb2 and Pkd1, was increased in HNF-1ß knock-out kidneys and in cells expressing mutant HNF-1ß. Overexpression of miR-200 decreased the expression of Zeb2 and Pkd1 in HNF-1ß mutant cells. These studies reveal a novel pathway whereby HNF-1ß directly contributes to the control of miRNAs that are involved in epithelial-mesenchymal transition and cystic kidney disease.


Asunto(s)
Regulación de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , Animales , Secuencia de Bases , Células Epiteliales/metabolismo , Técnicas de Inactivación de Genes , Genómica , Células HeLa , Factor Nuclear 1-beta del Hepatocito/deficiencia , Factor Nuclear 1-beta del Hepatocito/genética , Proteínas de Homeodominio/genética , Humanos , Riñón/citología , Ratones , Mutación , Proteínas Represoras/genética , Canales Catiónicos TRPP/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
14.
Am J Physiol Renal Physiol ; 307(3): F356-68, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899057

RESUMEN

Autosomal recessive polycystic kidney disease, an inherited disorder characterized by the formation of cysts in renal collecting ducts and biliary dysgenesis, is caused by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene. Expression of PKHD1 is tissue specific and developmentally regulated. Here, we show that a 2.0-kb genomic fragment containing the proximal promoter of mouse Pkhd1 directs tissue-specific expression of a lacZ reporter gene in transgenic mice. LacZ is expressed in renal collecting ducts beginning during embryonic development but is not expressed in extrarenal tissues. The Pkhd1 promoter contains a binding site for the transcription factor hepatocyte nuclear factor (HNF)-1ß, which is required for activity in transfected cells. Mutation of the HNF-1ß-binding site abolishes the expression of the lacZ reporter gene in renal collecting ducts. Transgenes containing the 2.0-kb promoter and 2.7 kb of additional genomic sequence extending downstream to the second exon are expressed in the kidney, intrahepatic bile ducts, and male reproductive tract. This pattern overlaps with the endogenous expression of Pkhd1 and coincides with sites of expression of HNF-1ß. We conclude that the proximal 2.0-kb promoter is sufficient for tissue-specific expression of Pkhd1 in renal collecting ducts in vivo and that HNF-1ß is required for Pkhd1 promoter activity in collecting ducts. Additional genomic sequences located from exons 1-2 or elsewhere in the gene locus are required for expression in extrarenal tissues.


Asunto(s)
Túbulos Renales Colectores/fisiología , Riñón Poliquístico Autosómico Recesivo/fisiopatología , Regiones Promotoras Genéticas/fisiología , Receptores de Superficie Celular/fisiología , Animales , Sistema Biliar/citología , Sistema Biliar/fisiología , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/fisiología , Factor Nuclear 1-beta del Hepatocito/fisiología , Túbulos Renales Colectores/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Riñón Poliquístico Autosómico Recesivo/genética , Regiones Promotoras Genéticas/genética , Receptores de Superficie Celular/genética , Sistema Urogenital/citología , Sistema Urogenital/fisiología
15.
Pediatr Nephrol ; 29(4): 621-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24077661

RESUMEN

The molecular basis of nephron progenitor cell renewal and differentiation into nascent epithelial nephrons is an area of intense investigation. Defects in these early stages of nephrogenesis lead to renal hypoplasia, and eventually hypertension and chronic kidney disease. Terminal nephron differentiation, the process by which renal epithelial precursor cells exit the cell cycle and acquire physiological functions is equally important. Failure of terminal epithelial cell differentiation results in renal dysplasia and cystogenesis. Thus, a better understanding of the transcriptional frameworks that regulate early and late renal cell differentiation is of great clinical significance. In this review, we will discuss evidence implicating the MDM2-p53 pathway in cell fate determination during development. The emerging central theme from loss- and gain-of-function studies is that tight regulation of p53 levels and transcriptional activity is absolutely required for nephrogenesis. We will also discuss how post-translational modifications of p53 (e.g., acetylation and phosphorylation) alter the spatiotemporal and functional properties of p53 and thus cell fate during kidney development. Mutations and polymorphisms in the MDM2-p53 pathway are present in more than 50 % of cancers in humans. This raises the question of whether sequence variants in the MDM2-p53 pathway increase the susceptibility to renal dysgenesis, hypertension or chronic kidney disease. With the advent of whole exome sequencing and other high throughput technologies, this hypothesis is testable in cohorts of children with renal dysgenesis.


Asunto(s)
Riñón/embriología , Organogénesis/fisiología , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Diferenciación Celular/fisiología , Humanos
16.
PLoS One ; 7(9): e44869, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984579

RESUMEN

Congenital reduction in nephron number (renal hypoplasia) is a predisposing factor for chronic kidney disease and hypertension. Despite identification of specific genes and pathways in nephrogenesis, determinants of final nephron endowment are poorly understood. Here, we report that mice with germ-line p53 deletion (p53(-/-)) manifest renal hypoplasia; the phenotype can be recapitulated by conditional deletion of p53 from renal progenitors in the cap mesenchyme (CM(p53-/-)). Mice or humans with germ-line heterozygous mutations in Pax2 exhibit renal hypoplasia. Since both transcription factors are developmentally expressed in the metanephros, we tested the hypothesis that p53 and Pax2 cooperate in nephrogenesis. In this study, we provide evidence for the presence of genetic epistasis between p53 and Pax2: a) p53(-/-) and CM(p53-/-)embryos express lower Pax2 mRNA and protein in nephron progenitors than their wild-type littermates; b) ChIP-Seq identified peaks of p53 occupancy in chromatin regions of the Pax2 promoter and gene in embryonic kidneys; c) p53 binding to Pax2 gene is significantly more enriched in Pax2 -expressing than non-expressing metanephric mesenchyme cells; d) in transient transfection assays, Pax2 promoter activity is stimulated by wild-type p53 and inhibited by a dominant negative mutant p53; e) p53 knockdown in cultured metanephric mesenchyme cells down-regulates endogenous Pax2 expression; f) reduction of p53 gene dosage worsens the renal hypoplasia in Pax2(+/-) mice. Bioinformatics identified a set of developmental renal genes likely to be co-regulated by p53 and Pax2. We propose that the cross-talk between p53 and Pax2 provides a transcriptional platform that promotes nephrogenesis, thus contributing to nephron endowment.


Asunto(s)
Riñón/fisiología , Nefronas/fisiología , Factor de Transcripción PAX2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Epistasis Genética , Heterocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Modelos Genéticos , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional
17.
Am J Physiol Renal Physiol ; 302(8): F928-40, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22237799

RESUMEN

The tumor suppressor protein p53 is a short-lived transcription factor due to Mdm2-mediated proteosomal degradation. In response to genotoxic stress, p53 is stabilized via posttranslational modifications which prevent Mdm2 binding. p53 activation results in cell cycle arrest and apoptosis. We previously reported that tight regulation of p53 activity is an absolute requirement for normal nephron differentiation (Hilliard S, Aboudehen K, Yao X, El-Dahr SS Dev Biol 353: 354-366, 2011). However, the mechanisms of p53 activation in the developing kidney are unknown. We show here that metanephric p53 is phosphorylated and acetylated on key serine and lysine residues, respectively, in a temporal profile which correlates with the maturational changes in total p53 levels and DNA-binding activity. Site-directed mutagenesis revealed a differential role for these posttranslational modifications in mediating p53 stability and transcriptional regulation of renal function genes (RFGs). Section immunofluorescence also revealed that p53 modifications confer the protein with specific spatiotemporal expression patterns. For example, phos-p53(S392) is enriched in maturing proximal tubular epithelial cells, whereas acetyl-p53(K373/K382/K386) are expressed in nephron progenitors. Functionally, p53 occupancy of RFG promoters is enhanced at the onset of tubular differentiation, and p53 loss or gain of function indicates that p53 is necessary but not sufficient for RFG expression. We conclude that posttranslational modifications are important determinants of p53 stability and physiological functions in the developing kidney. We speculate that the stress/hypoxia of the embryonic microenvironment may provide the stimulus for p53 activation in the developing kidney.


Asunto(s)
Riñón/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Humanos , Riñón/metabolismo , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fosforilación , Regiones Promotoras Genéticas , Serina/metabolismo , Proteína p53 Supresora de Tumor/genética
18.
Dev Biol ; 353(2): 354-66, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21420949

RESUMEN

Mdm2 (Murine Double Minute-2) is required to control cellular p53 activity and protein levels. Mdm2 null embryos die of p53-mediated growth arrest and apoptosis at the peri-implantation stage. Thus, the absolute requirement for Mdm2 in organogenesis is unknown. This study examined the role of Mdm2 in kidney development, an organ which develops via epithelial-mesenchymal interactions and branching morphogenesis. Mdm2 mRNA and protein are expressed in the ureteric bud (UB) epithelium and metanephric mesenchyme (MM) lineages. We report here the results of conditional deletion of Mdm2 from the UB epithelium. UB(mdm2-/-) mice die soon after birth and uniformly display severe renal hypodysplasia due to defective UB branching and underdeveloped nephrogenic zone. Ex vivo cultured UB(mdm2-/-) explants exhibit arrested development of the UB and its branches and consequently develop few nephron progenitors. UB(mdm2-/-) cells have reduced proliferation rate and enhanced apoptosis. Although markedly reduced in number, the UB tips of UB(mdm2-/-)metanephroi continue to express c-ret and Wnt11; however, there was a notable reduction in Wnt9b, Lhx-1 and Pax-2 expression levels. We further show that the UB(mdm2-/-) mutant phenotype is mediated by aberrant p53 activity because it is rescued by UB-specific deletion of the p53 gene. These results demonstrate a critical and cell autonomous role for Mdm2 in the UB lineage. Mdm2-mediated inhibition of p53 activity is a prerequisite for renal organogenesis.


Asunto(s)
Riñón/embriología , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Uréter/embriología , Animales , Apoptosis , Secuencia de Bases , Proliferación Celular , Cartilla de ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes p53 , Riñón/anomalías , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Organogénesis/genética , Organogénesis/fisiología , Embarazo , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Uréter/anomalías , Uréter/metabolismo
19.
Am J Physiol Renal Physiol ; 295(5): F1404-13, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18753293

RESUMEN

A physiological cross talk operates between the tumor suppressor protein p53 and the bradykinin B2 receptor (BdkrB2) during renal organogenesis. Thus, although BdkrB2 is a target for p53-mediated transcriptional activation, BdkrB2 is required to restrict p53 proapoptotic activity. We previously demonstrated that BdkrB2(-/-) embryos exposed to gestational salt stress develop renal dysgenesis as a result of p53-mediated apoptosis of nephron progenitors and repression of the terminal differentiation program. Compared with wild-type kidneys, BdkrB2(-/-) express abnormally high levels of the Checkpoint kinase (Chk1), which activates p53 via Ser23 phosphorylation. To define the functional relevance of p53S23 phosphorylation, we generated a compound strain of BdkrB2(-/-) mice harboring a homozygous Ser23-to-Ala (S23A) mutation in the p53 gene by crossing BdkrB2(-/-) with p53S23A knockin mice. Unlike salt-stressed BdkrB2(-/-) pups, which exhibit renal dysgenesis, homozygous S23A;BdkrB2(-/-) littermates are protected and have normal renal development. Heterozygous S23A;BdkrB2(-/-) mice have an intermediate phenotype. The p53-S23A substitution was associated with amelioration of apoptosis and restored markers of nephrogenesis and tubulogenesis. Real-time quantitative RT-PCR of terminal differentiation genes demonstrated that the S23A substitution restored normal expression patterns of aquaporin-2, Na-Cl cotransporter, Na-K-2Cl cotransporter, Na-bicarbonate cotransporter, and Sglt1. We conclude that p53 phosphorylation on Ser23 is an essential step in the signaling pathway mediating the susceptibility of BdkrB2(-/-) mutants to renal dysgenesis.


Asunto(s)
Sustitución de Aminoácidos , Riñón/anomalías , Receptor de Bradiquinina B2/genética , Proteína p53 Supresora de Tumor/genética , Administración Oral , Animales , Animales Recién Nacidos , Apoptosis/genética , Apoptosis/fisiología , Acuaporina 2/genética , Anomalías Congénitas/genética , Anomalías Congénitas/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Embarazo , Receptor de Bradiquinina B2/fisiología , Cloruro de Sodio/administración & dosificación , Cloruro de Sodio/farmacología , Simportadores del Cloruro de Sodio/genética , Simportadores de Sodio-Bicarbonato/genética , Transportador 1 de Sodio-Glucosa/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 1 de la Familia de Transportadores de Soluto 12 , Proteína p53 Supresora de Tumor/metabolismo
20.
Am J Physiol Renal Physiol ; 294(6): F1273-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18287399

RESUMEN

Terminal differentiation of epithelial cells into more specialized cell types is a critical step in organogenesis. Throughout the process of terminal differentiation, epithelial progenitors acquire or upregulate expression of renal function genes and cease to proliferate, while expression of embryonic genes is repressed. This exquisite coordination of gene expression is accomplished by signaling networks and transcription factors which couple the external environment with the new functional demands of the cell. While there has been much progress in understanding the early steps involved in renal epithelial cell differentiation, a major gap remains in our knowledge of the factors that control the steps of terminal differentiation. A number of signaling molecules and transcription factors have been recently implicated in determining segmental nephron identity and functional differentiation. While some of these factors (the p53 gene family, hepatocyte nuclear factor-1beta) promote the terminal epithelial differentiation fate, others (Notch, Brn-1, IRX, KLF4, and Foxi1) tend to regulate differentiation of specific nephron segments and individual cell types. This review summarizes current knowledge related to these transcription factors and discusses how diverse cellular signals are integrated to generate a transcriptional output during the process of terminal differentiation. Since these transcriptional processes are accompanied by profound changes in nuclear chromatin structure involving the genes responsible for creating and maintaining the differentiated cell phenotype, future studies should focus on identifying the nature of these epigenetic events and factors, how they are regulated temporally and spatially, and the chromatin environment they eventually reside in.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Nefronas/embriología , Nefronas/fisiología , Transcripción Genética/fisiología , Animales , Diferenciación Celular/genética , Humanos , Factor 4 Similar a Kruppel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...