Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(6): 9318-9340, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34499306

RESUMEN

To monitor groundwater salinization due to seawater intrusion (SWI) in the aquifer of the eastern Nile Delta, Egypt, we developed a predictive regression model based on an innovative approach using SWI indicators and artificial intelligence (AI) methodologies. Hydrogeological and hydrogeochemical data of the groundwater wells in three periods (1996, 2007, and 2018) were used as input data for the AI methods. All the studied indicators were enrolled in feature extraction process where the most significant inputs were determined, including the studied year, the distance from the shoreline, the aquifer type, and the hydraulic head. These inputs were used to build four basic AI models to get the optimal prediction results of the used indicators (the base exchange index (BEX), the groundwater quality index for seawater intrusion (GQISWI), and water quality). The machine learning models utilized in this study are logistic regression, Gaussian process regression, feedforward backpropagation neural networks (FFBPN), and deep learning-based long-short-term memory. The FFBPN model achieved higher evaluation results than other models in terms of root mean square error (RMSE) and R2 values in the testing phase, with R2 values of 0.9667, 0.9316, and 0.9259 for BEX, GQISWI, and water quality, respectively. Accordingly, the FFBPN was used to build a predictive model for electrical conductivity for the years 2020 and 2030. Reasonable results were attained despite the imbalanced nature of the dataset for different times and sample sizes. The results show that the 1000 µS/cm boundary is expected to move inland ~9.5 km (eastern part) to ~10 km (western part) to ~12.4 km (central part) between 2018 and 2030. This encroachment would be hazardous to water resources and agriculture unless action plans are taken.


Asunto(s)
Inteligencia Artificial , Agua Subterránea , Egipto , Monitoreo del Ambiente , Agua de Mar
2.
Comput Biol Med ; 135: 104606, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34247134

RESUMEN

BACKGROUND AND OBJECTIVE: The impact of diet on COVID-19 patients has been a global concern since the pandemic began. Choosing different types of food affects peoples' mental and physical health and, with persistent consumption of certain types of food and frequent eating, there may be an increased likelihood of death. In this paper, a regression system is employed to evaluate the prediction of death status based on food categories. METHODS: A Healthy Artificial Nutrition Analysis (HANA) model is proposed. The proposed model is used to generate a food recommendation system and track individual habits during the COVID-19 pandemic to ensure healthy foods are recommended. To collect information about the different types of foods that most of the world's population eat, the COVID-19 Healthy Diet Dataset was used. This dataset includes different types of foods from 170 countries around the world as well as obesity, undernutrition, death, and COVID-19 data as percentages of the total population. The dataset was used to predict the status of death using different machine learning regression models, i.e., linear regression (ridge regression, simple linear regularization, and elastic net regression), and AdaBoost models. RESULTS: The death status was predicted with high accuracy, and the food categories related to death were identified with promising accuracy. The Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2 metrics and 20-fold cross-validation were used to evaluate the accuracy of the prediction models for the COVID-19 Healthy Diet Dataset. The evaluations demonstrated that elastic net regression was the most efficient prediction model. Based on an in-depth analysis of recent nutrition recommendations by WHO, we confirm the same advice already introduced in the WHO report1. Overall, the outcomes also indicate that the remedying effects of COVID-19 patients are most important to people which eat more vegetal products, oilcrops grains, beverages, and cereals - excluding beer. Moreover, people consuming more animal products, animal fats, meat, milk, sugar and sweetened foods, sugar crops, were associated with a higher number of deaths and fewer patient recoveries. The outcome of sugar consumption was important and the rates of death and recovery were influenced by obesity. CONCLUSIONS: Based on evaluation metrics, the proposed HANA model may outperform other algorithms used to predict death status. The results of this study may direct patients to eat particular types of food to reduce the possibility of becoming infected with the COVID-19 virus.


Asunto(s)
COVID-19 , Pandemias , Animales , Dieta , Dieta Saludable , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA