Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protoplasma ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639891

RESUMEN

This study is the first to report the foliar and stem epidermal micro-morphology of 13 taxa of Indigofera L. (Fabaceae) using light (LM) and scanning electron microscopy (SEM). The micro-morphological characteristics studied here are related to the epidermal cell shape, size, frequency, anticlinal wall pattern, and stomatal complex types, size, position, frequency, and index. The study revealed 19 major normal stomatal types with eight subtypes and seven major abnormal stomatal types with 13 subtypes. The stomatal index was lower on the abaxial leaf surface than on the adaxial surface. Notably, the adaxial surface of I. hochstetteri had the highest stomatal index (27.46%), while the abaxial surface of I. oblongifolia had the lowest (9.95%). The adaxial surface of I. hochstetteri also displayed the highest average stomatal frequency (38.67), while the adaxial surface of I. spinosa had the lowest average frequency (9.37). SEM analysis revealed that most leaves had slightly sunken to sunken stomata, while stem stomata were positioned at the same level as epidermal cells in most taxa. Indigofera's foliar and stem epidermal anatomy recommends their application as baseline data coupled with other taxonomic data for the delimitation and differentiation of closely related taxa in the genus. The study provides a comprehensive description, illustrations, images, and micrographs of the stomatal types, as well as a taxonomic key for distinguishing the studied taxa of Indigofera.

2.
Planta ; 257(4): 64, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36811672

RESUMEN

MAIN CONCLUSION: Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Citocinesis , Alelos , ADN Complementario , Proteínas de Arabidopsis/metabolismo , Polen/genética , Células Madre/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
J Midlife Health ; 10(3): 115-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579194

RESUMEN

STUDY OBJECTIVE: The objective of the study was to estimate the diagnostic accuracy and doctor satisfaction of small caliber office cervicoscopy versus stationary colposcopy in diagnosis of ectocervical as well as endocervical lesions in women clinically presented with suspicious cervix. PATIENTS AND METHODS: Eligible 112 cases with clinically suspicious cervix were randomized into Group A (56 cases) and Group B (56 cases) who were subjected to small caliber office cervicoscopy and stationary colposcopy, respectively. The outcome was the diagnostic accuracy and safety of both tools for detection of ectocervical and endocervical cervical lesions. RESULTS: There was no statistically significant difference between both groups regarding parity, previous abortion, age at marriage, duration of marriage, and age at menarche and menopause. On unaided naked eye examination of the cervix (UNEE), there were no statistically significant differences between both groups. Diagnostic indices were similar in both groups apart from the finding that office cervicoscopy was more sensitive for detection of endocervical abnormalities. Doctors were significantly more satisfied with stationary colposcopy than office cervicoscopy. CONCLUSIONS: Office cervicoscopy is a good complementary tool added to stationary colposcopy for detection of cervical lesions in cases with suspicious cervix as an example of high-risk group for cervical cancer. Due to its small caliber, cervicoscopy offers a better evaluation of the endocervical canal, especially in cases of Type 2 and 3 transformation zone with a possibility of examination of the endometrial cavity.

4.
J Biotechnol ; 297: 19-27, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30902643

RESUMEN

Fluorescent proteins are valuable tools in the bioscience field especially in subcellular localization analysis of proteins and expression analysis of genes. Fusion with organelle-targeting signal accumulates fluorescent proteins in specific organelles, increases local brightness, and highlights the signal of fluorescent proteins even in tissues emitting a high background of autofluorescence. For these advantages, organelle-targeted fluorescent proteins are preferably used for promoter:reporter assay to define organ-, tissue-, or cell-specific expression pattern of genes in detail. In this study, we have developed a new series of Gateway cloning technology-compatible binary vectors, pGWBs (attR1-attR2 acceptor sites) and R4L1pGWB (attR4-attL1 acceptor sites), carrying organelle-targeted synthetic green fluorescent protein with S65T mutation (sGFP) (ER-, nucleus-, peroxisome-, and mitochondria-targeted sGFP) and organelle-targeted tag red fluorescent protein (TagRFP) (nucleus-, peroxisome-, and mitochondria-targeted TagRFP). These are available for preparation of promoter:reporter constructs by an LR reaction with a promoter entry clone attL1-promoter-attL2 (for pGWBs) or attL4-promoter-attR1 (for R4L1pGWBs), respectively. A transient expression experiment with particle bombardment using cauliflower mosaic virus 35S promoter-driven constructs has confirmed the correct localization of newly developed organelle-targeted TagRFPs by a co-localization analysis with the previously established organelle-targeted sGFPs. More intense and apparent fluorescence signals were detected by the nucleus- and peroxisome-targeted sGFPs than by the normal sGFPs in the promoter assay using transgenic Arabidopsis thaliana. The new pGWBs and R4L1pGWBs developed here are highly efficient and may serve as useful platforms for more accurate observation of GFP and RFP signals in gene expression analyses of plants.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Vectores Genéticos/metabolismo , Proteínas Luminiscentes/metabolismo , Orgánulos/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
5.
J Exp Bot ; 69(7): 1615-1633, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29390074

RESUMEN

The specialized multilayered pollen wall plays multiple roles to ensure normal microspore development. The major components of the pollen wall (e.g. sporopollenin and lipidic precursors) are provided from the tapetum. Material export from the endoplasmic reticulum (ER) is mediated by coat protein complex II (COPII) vesicles. The Arabidopsis thaliana genome encodes seven homologs of SEC23, a COPII component. However, the functional importance of this diversity remains elusive. Here, we analyzed knockout and knockdown lines for AtSEC23A and AtSEC23D, two of the A. thaliana SEC23 homologs, respectively. Single atsec23a and atsec23d mutant plants, despite normal fertility, showed an impaired exine pattern. Double atsec23ad mutant plants were semi-sterile and exhibited developmental defects in pollen and tapetal cells. Pollen grains of atsec23ad had defective exine and intine, and showed signs of cell degeneration. Moreover, the development of tapetal cells was altered, with structural abnormalities in organelles. AtSEC23A and AtSEC23D exhibited the characteristic localization pattern of COPII proteins and were highly expressed in the tapetum. Our work suggests that AtSEC23A and AtSEC23D may organize pollen wall development and exine patterning by regulating ER export of lipids and proteins necessary for pollen wall formation. Also, our results shed light on the functional heterogeneity of SEC23 homologs.


Asunto(s)
Arabidopsis/genética , Pared Celular/metabolismo , Polen/citología , Arabidopsis/citología , Arabidopsis/metabolismo , Biopolímeros/metabolismo , Carotenoides/metabolismo , Retículo Endoplásmico/metabolismo , Gametogénesis en la Planta/fisiología , Polen/genética
6.
PLoS One ; 12(5): e0177889, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28520787

RESUMEN

Vast numbers of proteins work cooperatively to exert their functions in various cells. In order to understand the functions and molecular mechanisms of these proteins in plants, analyses of transgenic plants that concomitantly express two protein-coding genes are often required. We developed a novel Gateway cloning technology-compatible binary vector system, the R4 dual-site (R4DS) Gateway cloning system, which enables the easy and efficient cloning of two desired sets of promoters and open reading frames (ORFs) into a binary vector using promoter and ORF entry clones. In this system, C-terminal fusions with 17 kinds of tags including visible reporters and epitope tags are available for each ORF, and selection by four kinds of resistance markers is possible. We verified that the R4DS Gateway cloning system functioned well in Arabidopsis thaliana by observing the expression and localization patterns of fluorescent proteins fused with organelle-targeting signals and driven by stomatal-lineage specific promoters. We also confirmed that the two cloning sites in the R4DS Gateway cloning system were equivalent and independently regulated. The results obtained indicate that the R4DS Gateway cloning system facilitates detailed comparisons of the expression patterns of two promoters as well as co-localization and interaction analyses of two proteins in specific cells in plants.


Asunto(s)
Arabidopsis/genética , Clonación Molecular/métodos , Vectores Genéticos/genética , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Plasmid ; 92: 1-11, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28499723

RESUMEN

Analyses of the subcellular localization of proteins and protein-protein interaction networks are essential to uncover the molecular basis of diverse biological processes in plants. To this end, we have created a Gateway cloning-compatible vector system, named dual-site (DS) Gateway cloning system to allow simple cloning of two expression cassettes in a binary vector and to express them simultaneously in plant cells. In the DS Gateway cloning system, (i) a moderate constitutive nopaline synthase promoter (Pnos), which is much suitable for localization analysis, is used to guide each expression cassette, (ii) four series of vectors with different plant resistance markers are established, (iii) N-terminal fusion with 6 fluorescent proteins and 7 epitope tags is available, (iv) both N- and C-terminal fusions with split enhanced yellow fluorescent protein (EYFP) are possible for efficient detection of protein-protein interactions using a bimolecular fluorescence complementation (BiFC) assay. The usefulness of the DS Gateway cloning system has been demonstrated by the analysis of the expression and the subcellular localization patterns of two Golgi proteins in stable expression system using A. thaliana, and by the analyses of interactions between subunits of coat protein complex II (COPII) both in transient and stable expression systems using Japanese leek and A. thaliana, respectively. The DS Gateway cloning system provides a multipurpose, efficient expression tool in gene function analyses and especially suitable for investigating interactions and subcellular localization of two proteins in living plant cells.


Asunto(s)
Clonación Molecular/métodos , Transformación Genética , Arabidopsis/genética , Expresión Génica , Genes de Plantas , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...