Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Nanotechnol ; 14(1): 75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781236

RESUMEN

Background: Radiotherapy (RT) is an essential component in the treatment regimens for many cancer patients. However, the dose escalation required to improve curative results is hindered due to the normal tissue toxicity that is induced. The introduction of radiosensitizers to RT treatment is an avenue that is currently being explored to overcome this issue. By introducing radiosensitizers into tumor sites, it is possible to preferentially enhance the local dose deposited. Gold nanoparticles (GNPs) are a potential candidate that have shown great promise in increasing the radiosensitivity of cancer cells through an enhancement in DNA damage. Furthermore, docetaxel (DTX) is a chemotherapeutic agent that arrests cells in the G2/M phase of the cell cycle, the phase most sensitive to radiation damage. We hypothesized that by incorporating DTX to GNP-enhanced radiotherapy treatment, we could further improve the radiosensitization experienced by cancer cells. To assess this strategy, we analyzed the radiotherapeutic effects on monolayer cell cultures in vitro, as well as on a mice prostate xenograft model in vivo while using clinically feasible concentrations for both GNPs and DTX. Results: The introduction of DTX to GNP-enhanced radiotherapy further increased the radiotherapeutic effects experienced by cancer cells. A 38% increase in DNA double-strand breaks was observed with the combination of GNP/DTX vs GNP alone after a dose of 2 Gy was administered. In vivo results displayed significant reduction in tumor growth over a 30-day observation period with the treatment of GNP/DTX/RT when compared to GNP/RT after a single 5 Gy dose was given to mice. The treatment strategy also resulted in 100% mice survival, which was not observed for other treatment conditions. Conclusions: Incorporating DTX to work in unison with GNPs and RT can increase the efficacy of RT treatment. Our study suggests that the treatment strategy could improve tumor control through local dose enhancement. As the concentrations used in this study are clinically feasible, there is potential for this strategy to be translated into clinical settings. Supplementary Information: The online version contains supplementary material available at 10.1186/s12645-023-00228-0.

2.
Sci Adv ; 8(45): eabm9729, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367938

RESUMEN

Coating nanoparticles with stealth epilayers increases circulation time by evading opsonization, macrophage phagocytosis, and reticuloendothelial sequestration. However, this also reduces internalization by cancer cells upon reaching the tumor. We designed gold nanorods (GNRs) with an epilayer that retains stealth properties in circulation but transforms spontaneously in the acidotic tumor microenvironment to a cell-penetrating particle. We used a customized stoichiometric ratio of l-glutamic acid and l-lysine within an amphiphilic polymer of poly(l-glutamic acid-co-l-lysine), or P(Glu-co-Lys), to effect this transformation in acidotic environments. P(Glu-co-Lys)-GNRs were internalized by cancer cells to facilitate potent in vitro radiosensitization. When administered intravenously in mice, they accumulate in the periphery and core of tumors without any signs of serum biochemical or hematological alterations, normal organ histopathological abnormalities, or overt deterioration in animal health. Furthermore, P(Glu-co-Lys)-GNRs penetrated the tumor microenvironment to accumulate in the hypoxic cores of tumors to potently radiosensitize heterotopic and orthotopic pancreatic cancers in vivo.


Asunto(s)
Acidosis , Nanotubos , Neoplasias , Ratones , Animales , Oro/farmacología , Oro/química , Microambiente Tumoral , Lisina , Ácido Glutámico , Nanotubos/química , Hipoxia , Línea Celular Tumoral
3.
J Hepatocell Carcinoma ; 8: 1169-1179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595139

RESUMEN

Localized hepatocellular carcinoma (HCC) that is unresectable and non-transplantable can be treated by several liver-directed therapies. External beam radiation therapy (EBRT) is an increasingly accepted and widely utilized treatment modality in this setting. Accelerated charged particles such as proton beam therapy (PBT) and carbon ion radiation therapy (CIRT) offer technological advancements over conventional photon radiotherapy. In this review, we summarize the distinct advantages of CIRT use for HCC treatment, focusing on physical and biological attributes, and outline dosimetric and treatment planning caveats. Based on these considerations, we posit that HCC may be among the best indications for use of CIRT, as it allows for maximizing tumoricidal doses to the target volume while minimizing the dose to the organs at risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...