Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 78(1): 284-294, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738080

RESUMEN

BACKGROUND AND AIMS: Fatty liver disease (FLD) is caused by excess fat in the liver, and its global prevalence exceeds 33%. The role of protein expression on the pathogenesis of FLD and accompanied fibrosis and its potential as a disease biomarker is currently not clear. Hence, we aimed to identify plasma proteomics associated with FLD and fibrosis using population-based data. APPROACH AND RESULTS: Blood samples were collected from 2578 participants from the population-based Rotterdam Study cohort. The proximity extension assay reliably measured plasma levels of 171 cardiometabolic and inflammatory-related proteins (Olink Proteomics). FLD was assessed by ultrasound, and fibrosis by transient elastography. Logistic regression models quantified the association of plasma proteomics with FLD and fibrosis. In addition, we aimed to validate our results in liver organoids. The cross-sectional analysis identified 27 proteins significantly associated with FLD surpassing the Bonferroni-corrected p <2.92×10 -4 . The strongest association was observed for FGF-21 (ß=0.45, p =1.07×10 -18 ) and carboxylesterase 1 (CES1) protein (ß=0.66, p =4.91×10 -40 ). Importantly, 15 of the 27 proteins significantly associated with FLD were also associated with liver fibrosis. Finally, consistent with plasma proteomic profiling, we found the expression levels of IL-18 receptor 1 (IL-18R1) and CES1 to be upregulated in an FLD model of 3-dimensional culture human liver organoids. CONCLUSIONS: Among the general population, several inflammatory and cardiometabolic plasma proteins were associated with FLD and fibrosis. Particularly, plasma levels of FGF-21, IL-18R1, and CES1 were largely dependent on the presence of FLD and fibrosis and may therefore be important in their pathogenesis.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Estudios Transversales , Proteómica , Cirrosis Hepática
2.
EBioMedicine ; 87: 104392, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36502575

RESUMEN

BACKGROUND: Statin use could benefit patients with non-alcoholic fatty liver disease (NAFLD), but the evidence is segmented and inconclusive. This multidimensional study comprehensively investigated the potential benefits and mechanism-of-action of statins in NAFLD. METHODS: A cross-sectional investigation was performed within the Rotterdam Study (general population; n = 4.576) and the PERSONS cohort (biopsy-proven NAFLD patients; n = 569). Exclusion criteria were secondary causes for steatosis and insufficient data on alcohol, dyslipidemia or statin use. Associations of statin use with NAFLD (among entire general population), fibrosis and NASH (among NAFLD individuals and patients) were quantified. These results were pooled with available literature in meta-analysis. Last, we assessed statins' anti-lipid and anti-inflammatory effects in 3D cultured human liver organoids and THP-1 macrophages, respectively. FINDINGS: Statin use was inversely associated with NAFLD in the Rotterdam study compared to participants with untreated dyslipidemia. In the PERSONS cohort, statin use was inversely associated with NASH, but not with fibrosis. The meta-analysis included 7 studies and indicated a not significant inverse association for statin use with NAFLD (pooled-Odds Ratio: 0.69, 95% Confidence Interval: 0.46-1.01) and significant inverse associations with NASH (pooled-OR: 0.59, 95% CI: 0.44-0.79) and fibrosis (pooled-OR: 0.48, 95% CI: 0.33-0.70). In vitro, statins significantly reduced lipid droplet accumulation in human liver organoids and downregulated expression of pro-inflammatory cytokines in macrophages. INTERPRETATION: Pooled results demonstrated that statin use was associated with a lower prevalence of NASH and fibrosis and might prevent NAFLD. This may be partially attributed to the anti-lipid and anti-inflammatory characteristics of statins. Given their under-prescription, adequate prescription of statins may limit the disease burden of NAFLD. FUNDING: ZonMw, KWF, NWO, SLO, DGXII, RIDE, National and regional government, Erasmus MC and Erasmus University.


Asunto(s)
Dislipidemias , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Estudios Transversales , Hígado/metabolismo , Dislipidemias/metabolismo , Fibrosis
3.
Int J Obes (Lond) ; 46(12): 2137-2144, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36216908

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) represent a class of small non-coding RNAs that regulate gene expression post-transcriptionally and are implicated in the pathogenesis of different diseases. Limited studies have investigated the association of circulating miRNAs with obesity and body fat distribution and their link to obesity-related diseases using population-based data. METHODS: We conducted a genome-wide profile of circulating miRNAs in plasma, collected between 2002 and 2005, in 1208 participants from the population-based Rotterdam Study cohort. Obesity and body fat distribution were measured as body mass index (BMI), waist-to-hip ratio (WHR), android-fat to gynoid-fat ratio (AGR), and fat mass index (FMI) measured by anthropometrics and Dual X-ray Absorptiometry. Multivariable linear regression models were used to assess the association of 591 miRNAs well-expressed in plasma with these traits adjusted for potential covariates. We further sought for the association of identified miRNAs with cardiovascular and metabolic diseases in the Rotterdam study and previous publications. RESULTS: Plasma levels of 65 miRNAs were associated with BMI, 40 miRNAs with WHR, 65 miRNAs with FMI, and 15 miRNAs with AGR surpassing the Bonferroni-corrected P < 8.46 × 10-5. Of these, 12 miRNAs were significantly associated with all traits, while four miRNAs were associated only with WHR, three miRNAs only with FMI, and miR-378i was associated only with AGR. The most significant association among the overlapping miRNAs was with miR-193a-5p, which was shown to be associated with type 2 diabetes and hepatic steatosis in the Rotterdam Study. Moreover, five of the obesity-associated miRNAs and two of the body fat distribution miRNAs have been correlated previously to cardiovascular disease. CONCLUSIONS: This study indicates that plasma levels of several miRNAs are associated with obesity and body fat distribution which could help to better understand the underlying mechanisms and may have the biomarker potential for obesity-related diseases.


Asunto(s)
MicroARN Circulante , Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , MicroARN Circulante/genética , Obesidad/epidemiología , Obesidad/genética , Índice de Masa Corporal , Distribución de la Grasa Corporal , MicroARNs/genética
4.
Aliment Pharmacol Ther ; 53(3): 432-442, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33244812

RESUMEN

BACKGROUND: Fatty liver disease (FLD) is the most common cause of liver dysfunction in developed countries. There is great interest in developing clinically valid and minimally invasive biomarkers to enhance early diagnosis of FLD. AIM: To investigate the potential of circulatory microRNAs (miRNAs) as biomarkers of FLD at the population level. METHODS: Plasma levels of 2083 miRNAs were measured by RNA sequencing in 1999 participants from the prospective population-based Rotterdam Study cohort. The Hounsfield Unit (HU) attenuation of liver was measured using non-enhanced computed tomography (CT) scan. Logistic and linear regression models adjusting for potential confounders were used to examine the association of circulatory miRNAs with liver enzymes (n = 1991) and CT-based FLD (n = 954). Moreover, the association of miRNAs with hepatic steatosis and liver fibrosis was assessed longitudinally in individuals who underwent abdominal ultrasound (n = 1211) and transient elastography (n = 777) after a median follow-up of >6 years. RESULTS: Cross-sectional analysis showed 61 miRNAs significantly associated with serum gamma-glutamyl transferase and/or alkaline phosphatase levels (Bonferroni-corrected P < 8.46 × 10-5 ). Moreover, 17 miRNAs were significantly associated with CT-based FLD (P < 8.46 × 10-5 ); 14 were among miRNAs associated with liver enzymes. Longitudinal analysis showed that 4 of these 14 miRNAs (miR-193a-5p, miR-122-5p, miR-378d and miR-187-3p) were significantly associated with hepatic steatosis (P < 3.57 × 10-3 ) and three (miR-193a-5p, miR-122-5p and miR-193b-3p) were nominally associated with liver fibrosis (P < 0.05). Nine of the 14 identified miRNAs were involved in pathways underlying liver diseases. CONCLUSIONS: Plasma levels of several miRNAs can be used as biomarkers of FLD, laying the groundwork for future clinical applications.


Asunto(s)
Hepatopatías , MicroARNs , Biomarcadores , Biomarcadores de Tumor , Estudios Transversales , Humanos , MicroARNs/genética , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...