Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(12): e0107023, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38019013

RESUMEN

IMPORTANCE: Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , COVID-19 , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Front Immunol ; 14: 1049673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875126

RESUMEN

Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.


Asunto(s)
Anticuerpos Monoclonales , Inmunidad Humoral , Humanos , Afinidad de Anticuerpos , Epítopos
3.
Science ; 374(6566): 472-478, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34554826

RESUMEN

Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)­directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Mapeo Epitopo , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Antígenos Virales/química , Antígenos Virales/inmunología , COVID-19/terapia , Humanos , Epítopos Inmunodominantes/química , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química
4.
NPJ Vaccines ; 6(1): 110, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462438

RESUMEN

RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...