Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 7: e7224, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31531264

RESUMEN

Serine Protease Inhibitors (Serpins) control tightly regulated physiological processes and their dysfunction is associated to various diseases. Thus, increasing interest is given to these proteins as new therapeutic targets. Several studies provided functional and structural data about human serpins. By comparison, only little knowledge regarding bacterial serpins exists. Through the emergence of metagenomic studies, many bacterial serpins were identified from numerous ecological niches including the human gut microbiota. The origin, distribution and function of these proteins remain to be established. In this report, we shed light on the key role of human and bacterial serpins in health and disease. Moreover, we analyze their function, phylogeny and ecological distribution. This review highlights the potential use of bacterial serpins to set out new therapeutic approaches.

2.
Sci Rep ; 9(1): 8897, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222022

RESUMEN

Owing to the growing recognition of the gut microbiota as a main partner of human health, we are expecting that the number of indications for fecal microbiota transplantation (FMT) will increase. Thus, there is an urgent need for standardization of the entire process of fecal transplant production. This study provides a complete standardized procedure to prepare and store live and ready-to-use transplants that meet the standard requirements of good practices to applied use in pharmaceutical industry. We show that, if time before transformation to transplants would exceed 24 hours, fresh samples should not be exposed to temperatures above 20 °C, and refrigeration at 4 °C can be a safe solution. Oxygen-free atmosphere was not necessary and simply removing air above collected samples was sufficient to preserve viability. Transplants prepared in maltodextrin-trehalose solutions, stored in a -80 °C standard freezer and then rapidly thawed at 37 °C, retained the best revivification potential as  proven by 16S rRNA profiles, metabolomic fingerprints, and flow cytometry assays over a 3-month observation period. Maltodextrin-trehalose containing cryoprotectants were also efficient in preserving viability of lyophilized transplants, either in their crude or purified form, an option that can be attractive for fecal transplant biobanking and oral formulation.


Asunto(s)
Trasplante de Microbiota Fecal , Heces , Guías como Asunto , Manejo de Especímenes/métodos , Crioprotectores , Humanos , Polisacáridos , Trehalosa
3.
Front Microbiol ; 9: 273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515553

RESUMEN

Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an adhesion process mediated by cell surface proteins. To gain an insight into the genetic factors of S. salivarius that dictate host adhesion and biofilm formation, we developed a screening method, based on the differential sedimentation of bacteria in semi-liquid conditions according to their auto-aggregation capacity, which allowed us to identify twelve mutations affecting this auto-aggregation phenotype. Mutations targeted genes encoding (i) extracellular components, including the CshA surface-exposed protein, the extracellular BglB glucan-binding protein, the GtfE, GtfG and GtfH glycosyltransferases and enzymes responsible for synthesis of cell wall polysaccharides (CwpB, CwpK), (ii) proteins responsible for the extracellular localization of proteins, such as structural components of the accessory SecA2Y2 system (Asp1, Asp2, SecA2) and the SrtA sortase, and (iii) the LiaR transcriptional response regulator. These mutations also influenced biofilm architecture, revealing that similar cell-to-cell interactions govern assembly of auto-aggregates and biofilm formation. We found that BglB, CshA, GtfH and LiaR were specifically associated with bacterial auto-aggregation, whereas Asp1, Asp2, CwpB, CwpK, GtfE, GtfG, SecA2 and SrtA also contributed to adhesion to host cells and host-derived components, or to interactions with the human pathogen Fusobacterium nucleatum. Our study demonstrates that our screening method could also be used to identify genes implicated in the bacterial interactions of pathogens or probiotics, for which aggregation is either a virulence trait or an advantageous feature, respectively.

4.
Sci Rep ; 7: 44331, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281695

RESUMEN

The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp.


Asunto(s)
Cromosomas Bacterianos/química , ADN Bacteriano/genética , Evolución Molecular , Genoma Bacteriano , Secuencias Invertidas Repetidas , Lactobacillus delbrueckii/genética , Replicación del ADN , ADN Circular/genética , Lactobacillus delbrueckii/clasificación , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN
5.
Sci Rep ; 7: 40248, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091525

RESUMEN

The digestion of dietary fibers is a major function of the human intestinal microbiota. So far this function has been attributed to the microorganisms inhabiting the colon, and many studies have focused on this distal part of the gastrointestinal tract using easily accessible fecal material. However, microbial fermentations, supported by the presence of short-chain fatty acids, are suspected to occur in the upper small intestine, particularly in the ileum. Using a fosmid library from the human ileal mucosa, we screened 20,000 clones for their activities against carboxymethylcellulose and xylans chosen as models of the major plant cell wall (PCW) polysaccharides from dietary fibres. Eleven positive clones revealed a broad range of CAZyme encoding genes from Bacteroides and Clostridiales species, as well as Polysaccharide Utilization Loci (PULs). The functional glycoside hydrolase genes were identified, and oligosaccharide break-down products examined from different polysaccharides including mixed-linkage ß-glucans. CAZymes and PULs were also examined for their prevalence in human gut microbiome. Several clusters of genes of low prevalence in fecal microbiome suggested they belong to unidentified strains rather specifically established upstream the colon, in the ileum. Thus, the ileal mucosa-associated microbiota encompasses the enzymatic potential for PCW polysaccharide degradation in the small intestine.


Asunto(s)
Fibras de la Dieta/metabolismo , Fibras de la Dieta/microbiología , Microbioma Gastrointestinal , Íleon/microbiología , Bacteroides/metabolismo , Metabolismo de los Hidratos de Carbono , Carboximetilcelulosa de Sodio/metabolismo , Mapeo Cromosómico , Clostridiales/metabolismo , Heces/microbiología , Humanos , Metagenoma , Metagenómica , Xilanos/metabolismo
6.
PLoS One ; 11(7): e0159030, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27416027

RESUMEN

The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.


Asunto(s)
Quimiotaxis , Conjugación Genética , Microbioma Gastrointestinal/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Humanos , Filogenia , ARN Ribosómico 16S/genética
7.
Environ Microbiol ; 18(5): 1484-97, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26689997

RESUMEN

Alterations in gut microbiota composition and diversity were suggested to play a role in the development of obesity, a chronic subclinical inflammatory condition. We here evaluated the impact of oral consumption of a monostrain or multi-strain probiotic preparation in high-fat diet-induced obese mice. We observed a strain-specific effect and reported dissociation between the capacity of probiotics to dampen adipose tissue inflammation and to limit body weight gain. A multi-strain mixture was able to improve adiposity, insulin resistance and dyslipidemia through adipose tissue immune cell-remodelling, mainly affecting macrophages. At the gut level, the mixture modified the uptake of fatty acids and restored the expression level of the short-chain fatty acid receptor GPR43. These beneficial effects were associated with changes in the microbiota composition, such as the restoration of the abundance of Akkermansia muciniphila and Rikenellaceae and the decrease of other taxa like Lactobacillaceae. Using an in vitro gut model, we further showed that the probiotic mixture favours the production of butyrate and propionate. Our findings provide crucial clues for the design and use of more efficient probiotic preparations in obesity management and may bring new insights into the mechanisms by which host-microbe interactions govern such protective effects.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina , Probióticos/uso terapéutico , Animales , Masculino , Ratones , Microbiota , Obesidad
8.
Infect Genet Evol ; 33: 381-92, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25311532

RESUMEN

The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites (all levels of the digestive tract, skin, breast milk, and body fluids) and included clinical strains, no genetic or genomic niche-specific features could be identified to discriminate specific group.


Asunto(s)
Genoma Bacteriano , Genómica , Infecciones Estreptocócicas/microbiología , Streptococcus/clasificación , Streptococcus/genética , Análisis por Conglomerados , Orden Génico , Transferencia de Gen Horizontal , Genes Bacterianos , Genes Esenciales , Genómica/métodos , Humanos , Metabolómica , Tipificación de Secuencias Multilocus , Filogenia , Streptococcus/metabolismo
9.
BMC Genomics ; 15: 1101, 2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25496341

RESUMEN

BACKGROUND: Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. RESULTS: We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. CONCLUSIONS: Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Productos Lácteos/microbiología , Bases de Datos Genéticas , Fermentación , Metagenómica/métodos , Queso/microbiología , Genoma Bacteriano/genética , Microbiota , Análisis de Secuencia
10.
Nat Commun ; 5: 2876, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24407037

RESUMEN

While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti--called Wallaby--present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.


Asunto(s)
ADN de Hongos/genética , Transferencia de Gen Horizontal/genética , Islas Genómicas/genética , Penicillium/genética , Secuencia de Bases , Queso , Datos de Secuencia Molecular
11.
Proc Natl Acad Sci U S A ; 110(6): 2389-94, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23335630

RESUMEN

DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is correlated with the down-regulation of key transcriptional gene silencing factors and is partly dependent on an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoter regions, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to TEs/repeats.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , ARN Interferente Pequeño/genética
12.
PLoS Genet ; 8(9): e1002958, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028365

RESUMEN

Natural populations are known to differ not only in DNA but also in their chromatin-associated epigenetic marks. When such inter-individual epigenomic differences (or "epi-polymorphisms") are observed, their stability is usually not known: they may or may not be reprogrammed over time or upon environmental changes. In addition, their origin may be purely epigenetic, or they may result from regulatory variation encoded in the DNA. Studying epi-polymorphisms requires, therefore, an assessment of their nature and stability. Here we estimate the stability of yeast epi-polymorphisms of chromatin acetylation, and we provide a genome-by-epigenome map of their genetic control. A transient epi-drug treatment was able to reprogram acetylation variation at more than one thousand nucleosomes, whereas a similar amount of variation persisted, distinguishing "labile" from "persistent" epi-polymorphisms. Hundreds of genetic loci underlied acetylation variation at 2,418 nucleosomes either locally (in cis) or distantly (in trans), and this genetic control overlapped only partially with the genetic control of gene expression. Trans-acting regulators were not necessarily associated with genes coding for chromatin modifying enzymes. Strikingly, "labile" and "persistent" epi-polymorphisms were associated with poor and strong genetic control, respectively, showing that genetic modifiers contribute to persistence. These results estimate the amount of natural epigenomic variation that can be lost after transient environmental exposures, and they reveal the complex genetic architecture of the DNA-encoded determinism of chromatin epi-polymorphisms. Our observations provide a basis for the development of population epigenetics.


Asunto(s)
Cromatina/genética , Epigénesis Genética/genética , N-Metiltransferasa de Histona-Lisina , Polimorfismo Genético , Saccharomyces cerevisiae , Acetilación , Regulación Fúngica de la Expresión Génica , Genética de Población , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Polimorfismo de Nucleótido Simple , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
PLoS Genet ; 6(4): e1000913, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421933

RESUMEN

Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin. Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms, tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe here that the epigenomic sequence of histone H3 acetylation at Lysine 14 (H3K14ac) differs greatly between two unrelated strains of the yeast Saccharomyces cerevisiae. Using single-nucleosome chromatin immunoprecipitation and mapping, we interrogated 58,694 nucleosomes and found that 5,442 of them differed in their level of H3K14 acetylation, at a false discovery rate (FDR) of 0.0001. These Single Nucleosome Epi-Polymorphisms (SNEPs) were enriched at regulatory sites and conserved non-coding DNA sequences. Surprisingly, higher acetylation in one strain did not imply higher expression of the relevant gene. However, SNEPs were enriched in genes of high transcriptional variability and one SNEP was associated with the strength of gene activation upon stimulation. Our observations suggest a high level of inter-individual epigenomic variation in natural populations, with essential questions on the origin of this diversity and its relevance to gene x environment interactions.


Asunto(s)
Epigénesis Genética , Nucleosomas/metabolismo , Polimorfismo de Nucleótido Simple , Saccharomyces cerevisiae/genética , Acetilación , Secuencia Conservada , Genoma Fúngico , Saccharomyces cerevisiae/metabolismo
14.
J Mol Biol ; 394(3): 522-34, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19769988

RESUMEN

The biologically active state of many proteins requires their prior homo-oligomerisation. Such complexes are typically symmetrical, a feature that has been proposed to increase their stability and facilitate the evolution of allosteric regulation. We wished to examine the possibility that similar structures and properties could arise from genetic amplifications leading to internal symmetrical repeats. For this, we identified internal structural repeats in a nonredundant Protein Data Bank subset. While testing if repeats in proteins tend to be symmetrical, we found that about half of the large internal repeats are symmetrical, most frequently around a rotation axis of 180 degrees . These repeats were most likely created by genetic amplification processes because they show significant sequence similarity. Symmetrical repeats tend to have a fixed number of copies corresponding to their rotational symmetry order, that is, two for 180 degrees rotation axis, whereas asymmetrical repeats are in longer proteins and show copy number variability. When possible, we confirmed that proteins with symmetrical repeats folding as an n-mer have homologues lacking the repeat with a higher oligomerisation number corresponding to the rotation symmetry order of the repeat. Phylogenetic analyses of these protein families suggest that typically, but not always, symmetrical repeats arise in one single event from proteins that are homo-oligomers. These results suggest that oligomerisation and amplification of internal sequences can interplay in evolutionary terms because they result in functional analogues when the latter exhibit rotational symmetry.


Asunto(s)
Proteínas/química , Proteínas/genética , Variaciones en el Número de Copia de ADN , Bases de Datos de Proteínas , Evolución Molecular , Amplificación de Genes , Modelos Moleculares , Filogenia , Estructura Cuaternaria de Proteína , Secuencias Repetitivas de Aminoácido
15.
FEMS Microbiol Rev ; 33(3): 539-71, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19396957

RESUMEN

DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.


Asunto(s)
Archaea/genética , Bacterias/genética , Secuencias Repetitivas de Ácidos Nucleicos , Adaptación Biológica , Reordenamiento Génico
16.
Bioinformatics ; 24(13): 1536-7, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18487242

RESUMEN

UNLABELLED: Intragenic duplications of genetic material have important biological roles because of their protein sequence and structural consequences. We developed Swelfe to find internal repeats at three levels. Swelfe quickly identifies statistically significant internal repeats in DNA and amino acid sequences and in 3D structures using dynamic programming. The associated web server also shows the relationships between repeats at each level and facilitates visualization of the results. AVAILABILITY: http://bioserv.rpbs.jussieu.fr/swelfe. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Internet , Secuencias Repetitivas de Ácidos Nucleicos/genética , Alineación de Secuencia/métodos , Análisis de Secuencia/métodos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...