Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(12)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36560748

RESUMEN

Chikungunya virus (CHIKV) causes outbreaks of rash, arthritis, and fever associated with neurologic complications, where astrocytes are preferentially infected. A determinant of virulence is the macrodomain (MD) of nonstructural protein 3 (nsP3), which binds and removes ADP-ribose (ADPr) from ADP-ribosylated substrates and regulates stress-granule disruption. We compared the replication of CHIKV 181/25 (WT) and MD mutants with decreased ADPr binding and hydrolase (G32S) or increased ADPr binding and decreased hydrolase (Y114A) activities in C8-D1A astrocytic cells and NSC-34 neuronal cells. WT CHIKV replication was initiated more rapidly with earlier nsP synthesis in C8-D1A than in NSC-34 cells. G32S established infection, amplified replication complexes, and induced host-protein synthesis shut-off less efficiently than WT and produced less infectious virus, while Y114A replication was close to WT. However, G32S mutation effects on structural protein synthesis were cell-type-dependent. In NSC-34 cells, E2 synthesis was decreased compared to WT, while in C8-D1A cells synthesis was increased. Excess E2 produced by G32S-infected C8-D1A cells was assembled into virus particles that were less infectious than those from WT or Y114A-infected cells. Because nsP3 recruits ADP-ribosylated RNA-binding proteins in stress granules away from translation-initiation factors into nsP3 granules where the MD hydrolase can remove ADPr, we postulate that suboptimal translation-factor release decreased structural protein synthesis in NSC-34 cells while failure to de-ADP-ribosylate regulatory RNA-binding proteins increased synthesis in C8-D1A cells.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Proteínas no Estructurales Virales/metabolismo , Virus Chikungunya/genética , Replicación Viral/genética , Proteínas de Unión al ARN/metabolismo , Hidrolasas , Adenosina Difosfato Ribosa/metabolismo
2.
Vaccines (Basel) ; 10(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36423034

RESUMEN

Chikungunya virus (CHIKV) re-emergence in the last decade has resulted in explosive epidemics. Along with the classical symptoms of fever and debilitating arthralgia, there were occurrences of unusual clinical presentations such as neurovirulence and mortality. These generated a renewed global interest to develop prophylactic vaccines. Here, using the classical approach of virus attenuation, we developed an attenuated CHIKV strain (RGCB355/KL08-p75) for the purpose. Repeated passaging (75 times) of a local clinical isolate of ECSA lineage virus in U-87 MG human astrocytoma cells, an interferon-response-deficient cell line, resulted in efficient adaptation and attenuation. While experimental infection of 3-day old CHIKV-susceptible BALB/c pups with the parent strain RGCB355/KL08-p4 resulted in death of all the animals, there was 100% survival in mice infected with the attenuated p75. In adult, immunocompetent, CHIKV-non-susceptible C57BL/6 mice, inoculation with p75 induced high antibody response without any signs of disease. Both p4 and p75 strains are uniformly lethal to interferon-response-deficient AG129 mice. Passive protection studies in AG129 mice using immune serum against p75 resulted in complete survival. Whole-genome sequencing identified novel mutations that might be responsible for virus attenuation. Our results establish the usefulness of RGCB355/KL08-p75 as a strain for vaccine development against chikungunya.

3.
mBio ; 13(5): e0254322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197088

RESUMEN

COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on global public health, emphasizing the importance of understanding innate immune mechanisms and cellular restriction factors that cells can harness to fight viral infections. The multimembrane-spanning zinc metalloprotease ZMPSTE24 is one such restriction factor. ZMPSTE24 has a well-characterized proteolytic role in the maturation of prelamin A, precursor of the nuclear scaffold protein lamin A. An apparently unrelated role for ZMPSTE24 in viral defense involves its interaction with the interferon-inducible membrane proteins (IFITMs), which block virus-host cell fusion by rigidifying cellular membranes and thereby prevent viral infection. ZMPSTE24, like the IFITMs, defends cells against a broad spectrum of enveloped viruses. However, its ability to protect against coronaviruses has never been examined. Here, we show that overexpression of ZMPSTE24 reduces the efficiency of cellular infection by SARS-CoV-2 Spike-pseudotyped lentivirus and that genetic knockout or small interfering RNA-mediated knockdown of endogenous ZMPSTE24 enhances infectivity. We further demonstrate a protective role for ZMPSTE24 in a Spike-ACE2-dependent cell-cell fusion assay. In both assays, a catalytic dead version of ZMPSTE24 is equally as protective as the wild-type protein, indicating that ZMPSTE24's proteolytic activity is not required for defense against SARS-CoV-2. Finally, we demonstrate by plaque assays that Zmpste24-/- mouse cells show enhanced infection by a genuine coronavirus, mouse hepatitis virus (MHV). This study extends the range of viral protection afforded by ZMPSTE24 to include coronaviruses and suggests that targeting ZMPSTE24's mechanism of viral defense could have therapeutic benefit. IMPORTANCE The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has underscored the importance of understanding intrinsic cellular components that can be harnessed as the cell's first line of defense to fight against viral infection. Our paper focuses on one such protein, the integral membrane protease ZMPSTE24, which interacts with interferon-inducible transmembrane proteins (IFITMs). IFITMs interfere with virus entry by inhibiting fusion between viral and host cell membranes, and ZMPSTE24 appears to contribute to this inhibitory activity. ZMPSTE24 has been shown to defend cells against several, but not all, enveloped viruses. In this study, we extend ZMPSTE24's reach to include coronaviruses, by showing that ZMPSTE24 protects cells from SARS-CoV-2 pseudovirus infection, Spike protein-mediated cell-cell fusion, and infection by the mouse coronavirus MHV. This work lays the groundwork for further studies to decipher the mechanistic role of ZMPSTE24 in blocking the entry of SARS-CoV-2 and other viruses into cells.


Asunto(s)
COVID-19 , Virus de la Hepatitis Murina , Humanos , Ratones , Animales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Pandemias , Lamina Tipo A , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Interferente Pequeño , Internalización del Virus , Virus de la Hepatitis Murina/genética , Antivirales/farmacología , Células Gigantes , Metaloproteasas , Interferones , Zinc
4.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34328830

RESUMEN

The 5' capped, message-sense RNA genome of Chikungunya virus (CHIKV) utilizes the host cell machinery for translation. Translation is regulated by eIF2 alpha at the initiation phase and by eIF4F at cap recognition. Translational suppression by eIF2 alpha phosphorylation occurs as an early event in many alphavirus infections. We observe that in CHIKV-infected HEK293 cells, this occurs as a late event, by which time the viral replication has reached an exponential phase, implying its minimal role in virus restriction. The regulation by eIF4F is mediated through the PI3K-Akt-mTOR, p38 MAPK and RAS-RAF-MEK-ERK pathways. A kinetic analysis revealed that CHIKV infection did not modulate AKT phosphorylation, but caused a significant reduction in p38 MAPK phosphorylation. It caused degradation of phospho-ERK 1/2 by increased autophagy, leaving the PI3K-Akt-mTOR and p38 MAPK pathways for pharmacological targeting. mTOR inhibition resulted in moderate reduction in viral titre, but had no effect on CHIKV E2 protein expression, indicating a minimal role of the mTOR complex in virus replication. Inhibition of p38 MAPK using SB202190 caused a significant reduction in viral titre and CHIKV E2 and nsP3 protein expression. Furthermore, inhibiting the two pathways together did not offer any synergism, indicating that inhibiting the p38 MAPK pathway alone is sufficient to cause restriction of CHIKV replication. Meanwhile, in uninfected cells the fully functional RAS-RAF-MEK-ERK pathway can circumvent the effect of p38 MAPK inhibition on cap-dependent translation. Thus, our results show that host-directed antiviral strategies targeting cellular p38 MAPK are worth exploring against Chikungunya as they could be selective against CHIKV-infected cells with minimal effects on uninfected host cells.


Asunto(s)
Autofagia , Virus Chikungunya/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Imidazoles/farmacología , Biosíntesis de Proteínas , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Apoptosis , Línea Celular Tumoral , Virus Chikungunya/genética , Virus Chikungunya/fisiología , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Caperuzas de ARN , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral/efectos de los fármacos
5.
Curr Protein Pept Sci ; 22(4): 273-289, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33749559

RESUMEN

Innate immunity is the first line of defence elicited by the host immune system to fight against invading pathogens such as viruses and bacteria. From this elementary immune response, the more complex antigen-specific adaptive responses are recruited to provide a long-lasting memory against the pathogens. Innate immunity gets activated when the host cell utilizes a diverse set of receptors known as pattern recognition receptors (PRR) to recognize the viruses that have penetrated the host and responds with cellular processes like complement system, phagocytosis, cytokine release and inflammation and destruction of NK cells. Viral RNA or DNA or viral intermediate products are recognized by receptors like toll-like receptors(TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) thereby, inducing type I interferon response (IFN) and other proinflammatory cytokines in infected cells or other immune cells. But certain viruses can evade the host innate immune response to replicate efficiently, triggering the spread of the viral infection. The present review describes the similarity in the mechanism chosen by viruses from different families -HIV, SARSCoV- 2 and Nipah viruses to evade the innate immune response and how efficiently they establish the infection in the host. The review also addresses the stages of developments of various vaccines against these viral diseases and the challenges encountered by the researchers during vaccine development.


Asunto(s)
COVID-19/virología , Infecciones por VIH/virología , Infecciones por Henipavirus/virología , ARN Viral/inmunología , Vacunas Virales/inmunología , Virus , Animales , Humanos , Evasión Inmune , Inmunidad Innata , Virus/genética , Virus/inmunología
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547245

RESUMEN

While biomolecular condensates have emerged as an important biological phenomenon, mechanisms regulating their composition and the ways that viruses hijack these mechanisms remain unclear. The mosquito-borne alphaviruses cause a range of diseases from rashes and arthritis to encephalitis, and no licensed drugs are available for treatment or vaccines for prevention. The alphavirus virulence factor nonstructural protein 3 (nsP3) suppresses the formation of stress granules (SGs)-a class of cytoplasmic condensates enriched with translation initiation factors and formed during the early stage of infection. nsP3 has a conserved N-terminal macrodomain that hydrolyzes ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds the essential SG component G3BP1. Here, we show that macrodomain hydrolase activity reduces the ADP-ribosylation of G3BP1, disassembles virus-induced SGs, and suppresses SG formation. Expression of nsP3 results in the formation of a distinct class of condensates that lack translation initiation factors but contain G3BP1 and other SG-associated RNA-binding proteins. Expression of ADP-ribosylhydrolase-deficient nsP3 results in condensates that retain translation initiation factors as well as RNA-binding proteins, similar to SGs. Therefore, our data reveal that ADP-ribosylation controls the composition of biomolecular condensates, specifically the localization of translation initiation factors, during alphavirus infection.


Asunto(s)
Alphavirus/genética , ADN Helicasas/genética , N-Glicosil Hidrolasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas no Estructurales Virales/genética , Alphavirus/patogenicidad , Animales , Artritis/virología , Culicidae/virología , Encefalitis/virología , Exantema/virología , Regulación Viral de la Expresión Génica/genética , Células HeLa , Humanos , Proteínas de Unión al ARN/genética
7.
mBio ; 11(1)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047134

RESUMEN

Macrodomain (MD), a highly conserved protein fold present in a subset of plus-strand RNA viruses, binds to and hydrolyzes ADP-ribose (ADPr) from ADP-ribosylated proteins. ADPr-binding by the alphavirus nonstructural protein 3 (nsP3) MD is necessary for the initiation of virus replication in neural cells, whereas hydrolase activity facilitates replication complex amplification. To determine the importance of these activities for pathogenesis of alphavirus encephalomyelitis, mutations were introduced into the nsP3 MD of Sindbis virus (SINV), and the effects on ADPr binding and hydrolase activities, virus replication, immune responses, and disease were assessed. Elimination of ADPr-binding and hydrolase activities (G32E) severely impaired in vitro replication of SINV in neural cells and in vivo replication in the central nervous systems of 2-week-old mice with reversion to wild type (WT) (G) or selection of a less compromising change (S) during replication. SINVs with decreased binding and hydrolase activities (G32S and G32A) or with hydrolase deficiency combined with better ADPr-binding (Y114A) were less virulent than WT virus. Compared to the WT, the G32S virus replicated less well in both the brain and spinal cord, induced similar innate responses, and caused less severe disease with full recovery of survivors, whereas the Y114A virus replicated well, induced higher expression of interferon-stimulated and NF-κB-induced genes, and was cleared more slowly from the spinal cord with persistent paralysis in survivors. Therefore, MD function was important for neural cell replication both in vitro and in vivo and determined the outcome from alphavirus encephalomyelitis in mice.IMPORTANCE Viral encephalomyelitis is an important cause of long-term disability, as well as acute fatal disease. Identifying viral determinants of outcome helps in assessing disease severity and developing new treatments. Mosquito-borne alphaviruses infect neurons and cause fatal disease in mice. The highly conserved macrodomain of nonstructural protein 3 binds and can remove ADP-ribose (ADPr) from ADP-ribosylated proteins. To determine the importance of these functions for virulence, recombinant mutant viruses were produced. If macrodomain mutations eliminated ADPr-binding or hydrolase activity, viruses did not grow. If the binding and hydrolase activities were impaired, the viruses grew less well than the wild-type virus, induced similar innate responses, and caused less severe disease, and most of the infected mice recovered. If binding was improved, but hydrolase activity was decreased, the virus replicated well and induced greater innate responses than did the WT, but clearance from the nervous system was impaired, and mice remained paralyzed. Therefore, macrodomain function determined the outcome of alphavirus encephalomyelitis.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Hidrolasas/metabolismo , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Adenosina Difosfato Ribosa/genética , Animales , Encéfalo/virología , Línea Celular , Encefalomielitis/virología , Femenino , Hidrolasas/genética , Ratones , Mutación , Neuronas/virología , Transducción de Señal , Proteínas no Estructurales Virales/genética , Virulencia , Replicación Viral/genética
8.
Sci Rep ; 9(1): 9951, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289325

RESUMEN

Zika virus (ZIKV) is a re-emerged flavivirus transmitted by Aedes spp mosquitoes that has caused outbreaks of fever and rash on islands in the Pacific and in the Americas. These outbreaks have been associated with neurologic complications that include congenital abnormalities and Guillain-Barré syndrome (GBS). The pathogenesis of ZIKV-associated GBS, a potentially life-threatening peripheral nerve disease, remains unclear. Because Schwann cells (SCs) play a central role in peripheral nerve function and can be the target for damage in GBS, we characterized the interactions of ZIKV isolates from Africa, Asia and Brazil with human SCs in comparison with the related mosquito-transmitted flaviviruses yellow fever virus 17D (YFV) and dengue virus type 2 (DENV2). SCs supported sustained replication of ZIKV and YFV, but not DENV. ZIKV infection induced increased SC expression of IL-6, interferon (IFN)ß1, IFN-λ, IFIT-1, TNFα and IL-23A mRNAs as well as IFN-λ receptors and negative regulators of IFN signaling. SCs expressed baseline mRNAs for multiple potential flavivirus receptors and levels did not change after ZIKV infection. SCs did not express detectable levels of cell surface Fcγ receptors. This study demonstrates the susceptibility and biological responses of SCs to ZIKV infection of potential importance for the pathogenesis of ZIKV-associated GBS.


Asunto(s)
Virus del Dengue/inmunología , Dengue/inmunología , Células de Schwann/inmunología , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Proliferación Celular , Células Cultivadas , Dengue/patología , Dengue/virología , Humanos , Células de Schwann/patología , Células de Schwann/virología , Fiebre Amarilla/patología , Fiebre Amarilla/virología , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
9.
Proc Natl Acad Sci U S A ; 115(44): E10457-E10466, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30322911

RESUMEN

Alphaviruses are plus-strand RNA viruses that cause encephalitis, rash, and arthritis. The nonstructural protein (nsP) precursor polyprotein is translated from genomic RNA and processed into four nsPs. nsP3 has a highly conserved macrodomain (MD) that binds ADP-ribose (ADPr), which can be conjugated to protein as a posttranslational modification involving transfer of ADPr from NAD+ by poly ADPr polymerases (PARPs). The nsP3MD also removes ADPr from mono ADP-ribosylated (MARylated) substrates. To determine which aspects of alphavirus replication require nsP3MD ADPr-binding and/or hydrolysis function, we studied NSC34 neuronal cells infected with chikungunya virus (CHIKV). Infection induced ADP-ribosylation of cellular proteins without increasing PARP expression, and inhibition of MARylation decreased virus replication. CHIKV with a G32S mutation that reduced ADPr-binding and hydrolase activities was less efficient than WT CHIKV in establishing infection and in producing nsPs, dsRNA, viral RNA, and infectious virus. CHIKV with a Y114A mutation that increased ADPr binding but reduced hydrolase activity, established infection like WT CHIKV, rapidly induced nsP translation, and shut off host protein synthesis with reduced amplification of dsRNA. To assess replicase function independent of virus infection, a transreplicase system was used. Mutant nsP3MDs D10A, G32E, and G112E with no binding or hydrolase activity had no replicase activity, G32S had little, and Y114A was intermediate to WT. Therefore, ADP ribosylation of proteins and nsP3MD ADPr binding are necessary for initiation of alphavirus replication, while hydrolase activity facilitates amplification of replication complexes. These observations are consistent with observed nsP3MD conservation and limited tolerance for mutation.


Asunto(s)
Virus Chikungunya/genética , Regulación Viral de la Expresión Génica/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Mutación , Neuronas/virología , Dominios Proteicos , ARN Viral , Proteínas no Estructurales Virales/genética , Proteínas Virales/metabolismo
10.
Methods Mol Biol ; 1813: 297-316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097877

RESUMEN

Recently we characterized the mono(ADP-ribosyl) hydrolase (MAR hydrolase) activity of the macrodomain of nonstructural protein 3 (nsP3MD) of chikungunya virus. Using recombinant viruses with targeted mutations in the macrodomain, we demonstrated that hydrolase function is important for viral replication in cultured neuronal cells and for neurovirulence in mice. Here, we describe the general cell culture and animal model infection protocols for alphaviruses and the technical details for biochemical characterization of the MAR hydrolase activity of nsP3MD mutants and the preparation of recombinant viruses incorporating those mutations through site-directed mutagenesis of an infectious cDNA virus clone.


Asunto(s)
ADP-Ribosilación/genética , Alphavirus/genética , Biología Molecular/métodos , Proteínas no Estructurales Virales/química , Alphavirus/patogenicidad , Infecciones por Alphavirus/genética , Infecciones por Alphavirus/virología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Modelos Animales de Enfermedad , Ratones , Mutagénesis Sitio-Dirigida/métodos , Neuronas/virología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
11.
J Neurovirol ; 23(6): 886-902, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29067635

RESUMEN

Interferon regulated genes (IRGs) are critical in controlling virus infections. Here, we analyzed the expression profile of IRGs in the brain tissue in a mouse model of chikungunya virus (CHIKV) neurovirulence. Neurovirulence is one of the newer complications identified in disease caused by re-emerging strains of CHIKV, an alphavirus with positive-strand RNA in the Togaviridae family. In microarray analysis, we identified significant upregulation of 269 genes, out of which a predominant percentage (76%) was IRGs. The highly modulated IRGs included Ifit1, Ifi44, Ddx60, Usp18, Stat1, Rtp4, Mnda, Gbp3, Gbp4, Gbp7, Oasl2, Oas1g, Ly6a, Igtp, and Gbp10, along with many others exhibiting lesser changes in expression levels. We found that these IRG mRNA transcripts are modulated in parallel across CHIKV-infected mouse brain tissues, human neuronal cell line IMR-32 and hepatic cell line Huh-7. The genes identified to be highly modulated both in mouse brain and human neuronal cells were Ifit1, Ifi44, Ddx60, Usp18, and Mnda. In Huh-7 cells, however, only two IRGs (Gbp4 and Gbp7) showed a similar level of upregulation. Concordant modulation of IRGs in both mice and human cells indicates that they might play important roles in regulating CHIKV replication in the central nervous system (CNS). The induction of several IRGs in CNS during infection underscores the robustness of IRG-mediated innate immune response in CHIKV restriction. Further studies on these IRGs would help in evolving possibilities for their targeting in host-directed therapeutic interventions against CHIKV.


Asunto(s)
Fiebre Chikungunya/genética , Virus Chikungunya/inmunología , Interacciones Huésped-Patógeno , Factores Reguladores del Interferón/genética , ARN Mensajero/genética , Transcriptoma/inmunología , Proteínas Virales/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos/genética , Antígenos/inmunología , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Encéfalo/inmunología , Encéfalo/virología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Línea Celular , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Virus Chikungunya/patogenicidad , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , Modelos Animales de Enfermedad , Endopeptidasas/genética , Endopeptidasas/inmunología , Regulación de la Expresión Génica , Hepatocitos/inmunología , Hepatocitos/virología , Humanos , Inmunidad Innata , Factores Reguladores del Interferón/inmunología , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Neuronas/inmunología , Neuronas/virología , ARN Mensajero/inmunología , Proteínas de Unión al ARN , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Ubiquitina Tiolesterasa , Proteínas Virales/inmunología
12.
J Proteome Res ; 16(11): 4144-4155, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28959884

RESUMEN

Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism. In the proteome, we could also identify a few proteins that are reported to be involved in host-virus interactions. One such protein, Nucleophosmin (NPM1)/B23, a nucleolar protein, showed enhanced cytoplasmic aggregation in CHIKV-infected cells. NPM1 aggregation was predominantly localized in areas wherein CHIKV antigen could be detected. Furthermore, we observed that inhibition of this aggregation using a specific NPM1 oligomerization inhibitor, NSC348884, caused a significant dose-dependent enhancement in virus replication. There was a marked increase in the amount of intracellular viral RNA, and ∼105-fold increase in progeny virions in infected cells. Our proteomic analysis provides a comprehensive spectrum of host proteins modulated in response to CHIKV infection in astrocytic cells. Our results also show that NPM1/B23, a multifunctional chaperone, plays a critical role in restricting CHIKV replication and is a possible target for antiviral strategies.


Asunto(s)
Astrocitos/química , Virus Chikungunya/fisiología , Proteínas Nucleares/fisiología , Proteoma/análisis , Línea Celular , Fiebre Chikungunya/metabolismo , Humanos , Nucleofosmina , Replicación Viral
13.
Proc Natl Acad Sci U S A ; 114(7): 1666-1671, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28143925

RESUMEN

Chikungunya virus (CHIKV), an Old World alphavirus, is transmitted to humans by infected mosquitoes and causes acute rash and arthritis, occasionally complicated by neurologic disease and chronic arthritis. One determinant of alphavirus virulence is nonstructural protein 3 (nsP3) that contains a highly conserved MacroD-type macrodomain at the N terminus, but the roles of nsP3 and the macrodomain in virulence have not been defined. Macrodomain is a conserved protein fold found in several plus-strand RNA viruses that binds to the small molecule ADP-ribose. Prototype MacroD-type macrodomains also hydrolyze derivative linkages on the distal ribose ring. Here, we demonstrated that the CHIKV nsP3 macrodomain is able to hydrolyze ADP-ribose groups from mono(ADP-ribosyl)ated proteins. Using mass spectrometry, we unambiguously defined its substrate specificity as mono(ADP-ribosyl)ated aspartate and glutamate but not lysine residues. Mutant viruses lacking hydrolase activity were unable to replicate in mammalian BHK-21 cells or mosquito Aedes albopictus cells and rapidly reverted catalytically inactivating mutations. Mutants with reduced enzymatic activity had slower replication in mammalian neuronal cells and reduced virulence in 2-day-old mice. Therefore, nsP3 mono(ADP-ribosyl)hydrolase activity is critical for CHIKV replication in both vertebrate hosts and insect vectors, and for virulence in mice.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Virus Chikungunya/metabolismo , N-Glicosil Hidrolasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Aedes/virología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Sitios de Unión/genética , Línea Celular , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus Chikungunya/patogenicidad , Chlorocebus aethiops , Insectos Vectores/virología , N-Glicosil Hidrolasas/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Células Vero , Proteínas no Estructurales Virales/genética , Virulencia/genética , Replicación Viral/genética
14.
Sci Rep ; 6: 34793, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713505

RESUMEN

Zika virus (ZIKV) infection in pregnant women has been established as a cause of microcephaly in newborns. Here we test the hypothesis that neurodevelopmental stages when the brain is undergoing rapid growth are particularly vulnerable to the effects of ZIKV infection. We injected ZIKV intracranially into wild type C57BL/6 mice at two different time points: early postnatal development, when the brain is growing at its maximal rate, and at weaning, when the brain has largely reached adult size. Both time points showed widespread immunoreactivity for ZIKV and cleaved caspase 3 (CC3, a marker of apoptosis) throughout the brain. However, in early postnatal ZIKV injected mice, some brain areas and cell types display particularly large increases in apoptosis that we did not observe in older animals. Corticospinal pyramidal neurons, a cell type implicated in human microcephaly associated with ZIKV infection, are an example of one such cell type. Proliferating cells in the ventricular zone stem cell compartment are also depleted. These findings are consistent with the hypothesis that periods of rapid brain growth are especially susceptible to neurodevelopmental effects of ZIKV infection, and establish a valuable model to investigate mechanisms underlying neurodevelopmental effects of ZIKV infection and explore candidate therapeutics.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/virología , Microcefalia/virología , Neuronas/patología , Infección por el Virus Zika/fisiopatología , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Encéfalo/anomalías , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Neuronas/virología
15.
Infect Genet Evol ; 37: 174-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26611825

RESUMEN

Cosmopolitan genotypes of Chikungunya virus caused the large-scale febrile disease outbreaks in the last decade in Asian and African continents. Molecular analyses of these strains had revealed significant genetic diversification and occurrence of novel mosquito-adaptive mutations. In the present study we looked into whether the genetic diversification has implications in the infectivity phenotype. A detailed sequence and phylogenetic analyses of these virus strains of Indian Ocean lineage from Kerala, South India from the years 2008 to 2013 identified three distinct genetic clades (I, II and III), which had presence of clade-specific amino acid changes. The E2 envelope protein of the strains from the years 2012 to 2013 had a K252Q or a novel K252H change. This site is reported to affect mosquito cell infectivity. Most of these strains also had the E2 G82R mutation, a mutation previously identified to increase mammalian cell infectivity, and a novel mutation E2 N72S. Positive selection was identified in four sites in the envelope proteins (E1 K211E, A226V and V291I; E2 K252Q/H). In infectivity analysis, we found that strains from clade III had enhanced cytopathogenicity in HEK293 and Vero cells than by strains representing other two clades. These two strains formed smaller sized plaques and had distinctly higher viral protein expression, infectious virus production and apoptosis induction in HEK293 cells. They had novel mutations R171Q in the nsP1; I539S in nsP2; N409T in nsP3; and N72S in E2. Our study identifies a correlation between phylogenetic clade diversification and differences in mammalian cell infectivity phenotype among Cosmopolitan genotype CHIKV strains.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Mutación , Proteínas del Envoltorio Viral/genética , Línea Celular , Virus Chikungunya/aislamiento & purificación , Evolución Molecular , Genotipo , Humanos , Técnicas In Vitro , Filogenia , ARN Viral/análisis , Selección Genética
16.
J Virol ; 89(16): 8280-91, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041298

RESUMEN

UNLABELLED: Susceptibility to alphavirus encephalomyelitis is dependent on a variety of factors, including the genetic background of the host. Neuroadapted Sindbis virus (NSV) causes uniformly fatal disease in adult C57BL/6 (B6) mice, but adult BALB/c (Bc) mice recover from infection. In B6 mice, fatal encephalomyelitis is immune mediated rather than a direct result of virus infection. To identify the immunological determinants of host susceptibility to fatal NSV-induced encephalomyelitis, we compared virus titers and immune responses in adult B6 and Bc mice infected intranasally with NSV. B6 mice had higher levels of virus replication, higher levels of type I interferon (IFN), and slower virus clearance than did Bc mice. B6 mice had more neuronal apoptosis, more severe neurologic disease, and higher mortality than Bc mice. B6 mice had more infiltration of inflammatory cells and higher levels of IL1b, IL-6, TNFa, Csf2, and CCL2 mRNAs and interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IFN-γ, and C-C motif ligand 2 (CCL2) protein in brains than Bc mice. However, Bc mice had more brain antibody at day 7 and a higher percentage of CD4(+) T cells. CD4(+) T cells in the brains of Bc mice included fewer Th17 cells and more regulatory T cells (Tregs) producing IL-10 than B6 mice, accompanied by higher levels of Il2 and Cxcl10 mRNAs. In the absence of IL-10, resistant Bc mice became susceptible to fatal encephalomyelitis after NSV infection. These studies demonstrate the importance of the immune response and its regulation in determining host survival during alphavirus encephalomyelitis. IMPORTANCE: Mosquito-borne alphavirus infections are an important cause of encephalomyelitis in humans. The severity of disease is dependent both on the strain of the virus and on the age and genetic background of the host. A neurovirulent strain of Sindbis virus causes immune-mediated fatal encephalomyelitis in adult C57BL/6 mice but not in BALB/c mice. To determine the host-dependent immunological mechanisms underlying the differences in susceptibility between these two strains of mice, we compared their immune responses to infection. Resistance to fatal disease in BALB/c mice was associated with better antibody responses, more-rapid virus clearance, fewer Th17 cells, and more-potent regulatory T cell responses than occurred in susceptible C57BL/6 mice. In the absence of interleukin-10, a component of the regulatory immune response, resistant mice became susceptible to lethal disease. This study demonstrates the importance of the immune response and its regulation for host survival during alphavirus encephalomyelitis.


Asunto(s)
Alphavirus/patogenicidad , Susceptibilidad a Enfermedades/inmunología , Encefalomielitis/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Citocinas/genética , Encefalomielitis/virología , Expresión Génica , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Virulencia
17.
J Proteomics ; 120: 126-41, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25782748

RESUMEN

Global re-emergence of Chikungunya virus (CHIKV) has renewed the interest in its cellular pathogenesis. We subjected CHIKV-infected Human Embryo Kidney cells (HEK293), a widely used cell-based system for CHIKV infection studies, to a high throughput expression proteomics analysis by Liquid Chromatography-tandem mass spectrometry. A total of 1047 differentially expressed proteins were identified in infected cells, consistently in three biological replicates. Proteins involved in transcription, translation, apoptosis and stress response were the major ones among the 209 proteins that had significant up-regulation. In the set of 45 down-regulated proteins, those involved in carbohydrate and lipid metabolism predominated. A STRING network analysis revealed tight interaction of proteins within the apoptosis, stress response and protein synthesis pathways. We short-listed a common set of 30 proteins that can be implicated in cellular pathology of CHIKV infection by comparing our results and results of earlier CHIKV proteomics studies. Modulation of eight proteins selected from this set was re-confirmed at transcript level. One among them, Nucleophosmin, a nuclear chaperone, showed temporal modulation and cytoplasmic aggregation upon CHIKV infection in double immunofluorescence staining and confocal microscopy. The short-listed cellular proteins will be potential candidates for targeted study of the molecular interactions of CHIKV with host cells. BIOLOGICAL SIGNIFICANCE: Chikungunya remained as a neglected tropical disease till its re-emergence in 2005 in the La RéUnion islands and subsequently, in India and many parts of South East Asia. These and the epidemics that followed in subsequent years ran an explosive course leading to extreme morbidity and attributed mortality to this originally benign virus infection. Apart from classical symptoms of acute fever and debilitating polyarthralgia lasting for several weeks, a number of complications were documented. These included aphthous-like ulcers and vesiculo-bullous eruptions on the skin, hepatic involvement, central nervous system complications such as encephalopathy and encephalitis, and transplacental transmission. The disease has recently spread to the Americas with its initial documentation in the Caribbean islands. The Asian genotype of this positive-stranded RNA virus of the Alphavirus genus has been attributed in these outbreaks. However, the disease ran a similar course as the one caused by the East, Central and South African (ECSA) genotype in the other parts of the world. Studies have documented a number of mutations in the re-emerging strains of the virus that enhances mosquito adaptability and modulates virus infectivity. This might support the occurrence of fiery outbreaks in the absence of herd immunity in affected population. Several research groups work to understand the pathogenesis of chikungunya and the mechanisms of complications using cellular and animal models. A few proteomics approaches have been employed earlier to understand the protein level changes in the infected cells. Our present study, which couples a high throughput proteomic analysis and a comparative review of these earlier studies, identifies a few critical molecules as hypothetical candidates that might be important in this infection and for future study.


Asunto(s)
Fiebre Chikungunya/metabolismo , Virus Chikungunya/fisiología , Regulación Viral de la Expresión Génica/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Fiebre Chikungunya/virología , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Nucleofosmina , Transducción de Señal
18.
PLoS One ; 8(9): e75854, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086645

RESUMEN

Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1ß, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against glioblastoma, a highly aggressive malignancy.


Asunto(s)
Apoptosis/fisiología , Astrocitos/virología , Virus Chikungunya/metabolismo , Glioblastoma/virología , Línea Celular Tumoral , Citocinas/metabolismo , Fragmentación del ADN , Estrés del Retículo Endoplásmico/fisiología , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Viroterapia Oncolítica/métodos , Ensayo de Placa Viral
19.
Virus Genes ; 45(1): 1-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22729802

RESUMEN

In this study, dengue virus (DENV) isolates from a localized, small-scale, non-seasonal dengue outbreak were genetically characterized. The outbreak occurred during the pre-monsoon months (April-May) in a medical college campus in Kerala, South India in 2009 affecting 76 people. Analysis of 39 viral RNA positive serum samples by a serotype specific reverse-transcription polymerase chain reaction identified dengue virus serotype 1 (DENV1) as the causative strain. Formation of a distinct genetic clade was revealed in the initial phylogenetic analysis using nucleotide sequences of a partial (303 bp) Capsid-Pre-membrane protein (C-PrM) coding region of 37 outbreak strains. The sequences of these strains clustered with that of the Genotype III DENV-1 strains from India, and 32 among them formed a single major sub-clade. Whole-genome sequencing (10,693 bp) of two strains (RGCB585/2009 and RGCB592/2009) selected from this major sub-clade, and subsequent phylogenetic analysis using the full-length coding region sequence showed that the sequences grouped with that of the isolates from Thailand (1980), Comoros (1993), Singapore (1993), and Brunei (2005) among the Indo-Pacific isolates. The sequences of the two strains had a nucleotide identity of 97-98 % and an amino acid identity of 98-99 % with these closely related strains. Maximum amino acid similarity was shown with the Singapore 8114/93 isolate (99.6 %). Four mutations-L46M in the capsid, D278N in the NS1, L123I, and L879S in the NS5 protein coding regions-were seen as signature substitutions uniformly in RGCB585/2009 and RGCB592/2009; in another isolate from Kerala (RGCB419/2008) and in the Brunei isolate (DS06-210505). These four isolates also had in common a 21-nucleotide deletion in the hyper-variable region of the 3'-non-translated region. This first report on the complete genome characterization of DENV-1 isolates from India reveals a dengue outbreak caused by a genetically different viral strain. The results point to the possibility of exotic introduction of these circulating viral strains in the region.


Asunto(s)
Virus del Dengue/genética , Dengue/epidemiología , Brotes de Enfermedades , Evolución Molecular , Genoma Viral , Análisis de Secuencia de ADN , Adulto , Secuencia de Aminoácidos , Dengue/diagnóstico , Dengue/virología , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Femenino , Genotipo , Humanos , India/epidemiología , Funciones de Verosimilitud , Masculino , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serotipificación
20.
Virol J ; 7: 189, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20704755

RESUMEN

Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by infected Aedes (Ae.) aegypti and Ae.albopictus mosquitoes. In the study, reverse-transcription PCR (RT PCR) and virus isolation detected CHIKV in patient samples and also in adult Ae.albopictus mosquitoes that was derived from larvae collected during a chikungunya (CHIK) outbreak in Kerala in 2009. The CHIKV strains involved in the outbreak were the East, Central and South African (ECSA) genotype that had the E1 A226V mutation. The viral strains from the mosquitoes and CHIK patients from the same area showed a close relationship based on phylogenetic analysis. Genetic characterization by partial sequencing of non-structural protein 2 (nsP2; 378 bp), envelope E1 (505 bp) and E2 (428 bp) identified one critical mutation in the E2 protein coding region of these CHIKV strains. This novel, non-conservative mutation, L210Q, consistently present in both human and mosquito-derived samples studied, was within the region of the E2 protein (amino acids E2 200-220) that determines mosquito cell infectivity in many alpha viruses. Our results show the involvement of Ae. albopictus in this outbreak in Kerala and appearance of CHIKV with novel genetic changes. Detection of virus in adult mosquitoes, emerged in the laboratory from larvae, also points to the possibility of transovarial transmission (TOT) of mutant CHIKV strains in mosquitoes.


Asunto(s)
Aedes/virología , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Virus Chikungunya/clasificación , Virus Chikungunya/aislamiento & purificación , Brotes de Enfermedades , Sustitución de Aminoácidos/genética , Animales , Virus Chikungunya/genética , Análisis por Conglomerados , Humanos , India/epidemiología , Mutación Missense , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética , Cultivo de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA