Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertension ; 81(1): 151-161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909235

RESUMEN

BACKGROUND: After a large intracerebral hemorrhage (ICH), the hematoma and swelling cause intracranial pressure (ICP) to increase, sometimes causing brain herniation and death. This is partly countered by widespread tissue compliance, an acute decrease in tissue volume distal to the stroke, at least in young healthy animals. Intracranial compensation dynamics seem to vary with age, but there is no data on old animals or those with hypertension, major factors influencing ICH risk and outcome. METHODS: We assessed hematoma volume, edema, ICP, and functional deficits in young and aged spontaneously hypertensive rats (SHRs) and young normotensive control strains after collagenase-induced ICH. Macroscopic and microscopic brain volume fractions, such as contralateral hemisphere volume, cortical thickness, and neuronal morphology, were assessed via histological and stereological techniques. RESULTS: Hematoma volume was 52% larger in young versus aged SHRs; surprisingly, aged SHRs still experienced proportionally worse outcomes following ICH, with 2× greater elevations in edema and ICP relative to bleed volume and 3× the degree of tissue compliance. Aged SHRs also experienced equivalent neurological deficits following ICH compared with their younger counterparts, despite the lack of significant age-related behavioral effects. Importantly, tissue compliance occurred across strains and age groups and was not impaired by hypertension or old age. CONCLUSIONS: Aged SHRs show considerable capacity for tissue compliance following ICH and seem to rely on such mechanisms more heavily in settings of elevated ICP. Therefore, the ICP compensation response to ICH mass effect varies across the lifespan according to risk factors such as chronic hypertension.


Asunto(s)
Hipertensión , Presión Intracraneal , Ratas , Animales , Ratas Endogámicas SHR , Hemorragia Cerebral , Hematoma/etiología , Edema
2.
Transl Stroke Res ; 14(6): 970-986, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36367666

RESUMEN

Rising intracranial pressure (ICP) aggravates secondary injury and heightens risk of death following intracerebral hemorrhage (ICH). Long-recognized compensatory mechanisms that lower ICP include reduced cerebrospinal fluid and venous blood volumes. Recently, we identified another compensatory mechanism in severe stroke, a decrease in cerebral parenchymal volume via widespread reductions in cell volume and extracellular space (tissue compliance). Here, we examined how age affects tissue compliance and ICP dynamics after severe ICH in rats (collagenase model). A planned comparison to historical young animal data revealed that aged SHAMs (no stroke) had significant cerebral atrophy (9% reduction, p ≤ 0.05), ventricular enlargement (9% increase, p ≤ 0.05), and smaller CA1 neuron volumes (21%, p ≤ 0.05). After ICH in aged animals, contralateral striatal neuron density and CA1 astrocyte density significantly increased (12% for neurons, 7% for astrocytes, p ≤ 0.05 vs. aged SHAMs). Unlike young animals, other regions in aged animals did not display significantly reduced cell soma volume despite a few trends. Nonetheless, overall contralateral hemisphere volume was 10% smaller in aged ICH animals compared to aged SHAMs (p ≤ 0.05). This age-dependent pattern of tissue compliance is not due to absent ICH-associated mass effect (83.2 mm3 avg. bleed volume) as aged ICH animals had significantly elevated mean and peak ICP (p ≤ 0.01), occurrence of ICP spiking events, as well as bilateral evidence of edema (e.g., 3% in injured brain, p ≤ 0.05 vs. aged SHAMs). Therefore, intracranial compliance reserve changes with age; after ICH, these and other age-related changes may cause greater fluctuation from baseline, increasing the chance of adverse outcomes like mortality.


Asunto(s)
Presión Intracraneal , Accidente Cerebrovascular , Ratas , Animales , Presión Intracraneal/fisiología , Hemorragia Cerebral/complicaciones , Encéfalo , Accidente Cerebrovascular/complicaciones
3.
J Neurochem ; 160(1): 128-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496050

RESUMEN

Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.


Asunto(s)
Hipotermia Inducida/métodos , Accidente Cerebrovascular/terapia , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...