Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geochim Cosmochim Acta ; 360: 192-206, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37928745

RESUMEN

Exposed and un-remediated metal(loid)-bearing mine tailings are susceptible to wind and water erosion that disperses toxic elements into the surrounding environment. Compost-assisted phytostabilization has been successfully applied to legacy tailings as an inexpensive, eco-friendly, and sustainable landscape rehabilitation that provides vegetative cover and subsurface scaffolding to inhibit offsite transport of contaminant laden particles. The possibility of augmented metal(loid) mobility from subsurface redox reactions driven by irrigation and organic amendments is known and arsenic (As) is of particular concern because of its high affinity for adsorption to reducible ferric (oxyhydr)oxide surface sites. However, the biogeochemical transformation of As in mine tailings during multiple redox oscillations has not yet been addressed. In the present study, a redox-stat reactor was used to control oscillations between 7 d oxic and 7 d anoxic half-cycles over a three-month period in mine tailings with and without amendment of compost-derived organic matter (OM) solution. Aqueous and solid phase analyses during and after redox oscillations by mass spectrometry and synchrotron X-ray absorption spectroscopy revealed that soluble OM addition stimulated pyrite oxidation, which resulted in accelerated acidification and increased aqueous sulfate activity. Soluble OM in the reactor solution significantly increased mobilization of As under anoxic half-cycles primarily through reductive dissolution of ferrihydrite. Microbially-mediated As reduction was also observed in compost treatments, which increased partitioning to the aqueous phase due to the lower affinity of As(III) for complexation on ferric surface sites, e.g. ferrihydrite. Oxic half-cycles showed As repartitioned to the solid phase concurrent with precipitation of ferrihydrite and jarosite. Multiple redox oscillations increased the crystallinity of Fe minerals in the Treatment reactors with compost solution due to the reductive dissolution of ferrihydrite and precipitation of jarosite. The release of As from tailings gradually decreased after repeated redox oscillations. The high sulfate, ferrous iron, and hydronium activity promoted the precipitation of jarosite, which sequestered arsenic. Our results indicated that redox oscillations under compost-assisted phytostabilization can promote As release that diminishes over time, which should inform remediation assessment and environmental risk assessment of mine site compost-assisted phytostabilization.

2.
Front Microbiol ; 12: 754698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887842

RESUMEN

Microbial communities in incipient soil systems serve as the only biotic force shaping landscape evolution. However, the underlying ecological forces shaping microbial community structure and function are inadequately understood. We used amplicon sequencing to determine microbial taxonomic assembly and metagenome sequencing to evaluate microbial functional assembly in incipient basaltic soil subjected to precipitation. Community composition was stratified with soil depth in the pre-precipitation samples, with surficial communities maintaining their distinct structure and diversity after precipitation, while the deeper soil samples appeared to become more uniform. The structural community assembly remained deterministic in pre- and post-precipitation periods, with homogenous selection being dominant. Metagenome analysis revealed that carbon and nitrogen functional potential was assembled stochastically. Sub-populations putatively involved in the nitrogen cycle and carbon fixation experienced counteracting assembly pressures at the deepest depths, suggesting the communities may functionally assemble to respond to short-term environmental fluctuations and impact the landscape-scale response to perturbations. We propose that contrasting assembly forces impact microbial structure and potential function in an incipient landscape; in situ landscape characteristics (here homogenous parent material) drive community structure assembly, while short-term environmental fluctuations (here precipitation) shape environmental variations that are random in the soil depth profile and drive stochastic sub-population functional dynamics.

3.
Sci Data ; 7(1): 306, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934240

RESUMEN

Land-atmosphere interactions at different temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artificial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO's hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat flux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 different heights ranging from 0.25 m to 9-10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...