Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Infect Dis ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079216

RESUMEN

INTRODUCTION: Brain tissue-derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from a simian immunodeficiency virus (SIV) model of HIV disease, we identified RNA networks in SIV infection and neuroinflammation. METHODS: Postmortem occipital cortex samples were obtained from uninfected controls and SIV-infected subjects (acute and chronic phases with or without CNS pathology (SIV encephalitis). bdEVs were separated and characterized per international consensus guidelines. RNAs from bdEVs and BH were sequenced and qPCR-amplified to detect levels of small RNAs (sRNAs, including microRNAs (miRNAs)) and longer RNAs including messenger RNAs (mRNAs) and circular RNAs (circRNAs). RESULTS: Dysregulated RNAs in BH and bdEVs were identified in acute and chronic infection with pathology groups, including mRNAs, miRNAs, and circRNAs. Most dysregulated mRNAs in bdEVs reflected dysregulation in source BH. These mRNAs are disproportionately involved in inflammation and immune responses. Based on target prediction, several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in sRNA levels in bdEVs during SIV infection. CONCLUSIONS: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.

2.
bioRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034720

RESUMEN

Introduction: Antiretroviral treatment regimens can effectively control HIV replication and some aspects of disease progression. However, molecular events in end-organ diseases such as central nervous system (CNS) disease are not yet fully understood, and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived extracellular vesicles (bdEVs) act locally in the source tissue and may indicate molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have emerged as important participants in HIV disease pathogenesis. Using brain tissue and bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), seeking to identify possible networks of RNA interaction in SIV infection and neuroinflammation. Methods: Postmortem occipital cortex tissue were collected from pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and chronic phase with or without CNS pathology). bdEVs were separated and characterized in accordance with international consensus standards. RNAs from bdEVs and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and circRNA levels. Results: Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, and circRNAs, were identified in acute infection and chronic infection with pathology. Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. These mRNAs are disproportionately involved in inflammation and immune responses, especially interferon pathways. For miRNAs, qPCR assays confirmed differential abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target prediction suggested that several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in small RNA levels in bdEVs during SIV infection. Conclusions: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.

3.
Nat Microbiol ; 8(5): 833-844, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973419

RESUMEN

The development of persistent cellular reservoirs of latent human immunodeficiency virus (HIV) is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Previous studies show that HIV persists in myeloid cells (monocytes and macrophages) in blood and tissues in virologically suppressed people with HIV (vsPWH). However, how myeloid cells contribute to the size of the HIV reservoir and what impact they have on rebound after treatment interruption remain unclear. Here we report the development of a human monocyte-derived macrophage quantitative viral outgrowth assay (MDM-QVOA) and highly sensitive T cell detection assays to confirm purity. We assess the frequency of latent HIV in monocytes using this assay in a longitudinal cohort of vsPWH (n = 10, 100% male, ART duration 5-14 yr) and find half of the participants showed latent HIV in monocytes. In some participants, these reservoirs could be detected over several years. Additionally, we assessed HIV genomes in monocytes from 30 vsPWH (27% male, ART duration 5-22 yr) utilizing a myeloid-adapted intact proviral DNA assay (IPDA) and demonstrate that intact genomes were present in 40% of the participants and higher total HIV DNA correlated with reactivatable latent reservoirs. The virus produced in the MDM-QVOA was capable of infecting bystander cells resulting in viral spread. These findings provide further evidence that myeloid cells meet the definition of a clinically relevant HIV reservoir and emphasize that myeloid reservoirs should be included in efforts towards an HIV cure.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Masculino , Humanos , Femenino , Infecciones por VIH/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/genética , Antirretrovirales/uso terapéutico , VIH-1/genética , Latencia del Virus , Macrófagos
4.
AIDS ; 37(5): 733-744, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779477

RESUMEN

OBJECTIVES: Latent infection by HIV hinders viral eradication despite effective antiretroviral treatment (ART). Among proposed contributors to viral latency are cellular small RNAs that have also been proposed to shuttle between cells in extracellular vesicles. Thus, we profiled extracellular vesicle small RNAs during different infection phases to understand the potential relationship between these extracellular vesicle associated small RNAs and viral infection. DESIGN: A well characterized simian immunodeficiency virus (SIV)/macaque model of HIV was used to profile extracellular vesicle enriched blood plasma fractions harvested during preinfection, acute infection, latent infection/ART treatment, and rebound after ART interruption. METHODS: Measurement of extracellular vesicle concentration, size distribution, and morphology was complemented with qPCR array for small RNA expression, followed by individual qPCR validations. Iodixanol density gradients were used to separate extracellular vesicle subtypes and virions. RESULTS: Plasma extracellular vesicle particle counts correlated with viral load and peaked during acute infection. However, SIV gag RNA detection showed that virions did not fully explain this peak. Extracellular vesicle microRNAs miR-181a, miR-342-3p, and miR-29a decreased with SIV infection and remained downregulated in latency. Interestingly, small nuclear RNA U6 had a tight association with viral load peak. CONCLUSION: This study is the first to monitor how extracellular vesicle concentration and extracellular vesicle small RNA expression change dynamically in acute viral infection, latency, and rebound in a carefully controlled animal model. These changes may also reveal regulatory roles in retroviral infection and latency.


Asunto(s)
Vesículas Extracelulares , Infecciones por VIH , MicroARNs , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Virus de la Inmunodeficiencia de los Simios/genética , Infecciones por VIH/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Macaca mulatta/genética , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología , Carga Viral , Replicación Viral
5.
Int Immunopharmacol ; 108: 108697, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35405594

RESUMEN

Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.


Asunto(s)
COVID-19 , Monocitos , Biomarcadores/metabolismo , Humanos , Receptores de Lipopolisacáridos/metabolismo , Mitocondrias/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2 , Carga Viral
6.
Mem Inst Oswaldo Cruz ; 116: e210237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35107520

RESUMEN

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target genes by molecular methods has been chosen as the main approach to identify individuals with Coronavirus disease 2019 (COVID-19) infection. OBJECTIVES: In this study, we developed an open-source RNA standard-based real-time quantitative RT-PCR (RT-qPCR) assay for quantitative diagnostics of SARS-CoV-2 from nasopharynx, oropharynx, saliva and plasma samples. METHODS AND FINDINGS: We evaluated three SARS-CoV-2 target genes and selected the RNA-dependent RNA polymerase (RdRp) gene, given its better performance. To improve the efficiency of the assay, a primer gradient containing 25 primers forward and reverse concentration combinations was performed. The forward and reverse primer pairs with 400 nM and 500 nM concentrations, respectively, showed the highest sensitivity. The LOD95% was ~60 copies per reaction. From the four biological matrices tested, none of them interfered with the viral load measurement. Comparison with the AllplexTM 2019-nCoV assay (Seegene) demonstrated that our test presents 90% sensitivity and 100% specificity. MAIN CONCLUSIONS: We developed an efficient molecular method able to measure absolute SARS-CoV-2 viral load with high replicability, sensitivity and specificity in different clinical samples.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Viral
7.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33914710

RESUMEN

BACKGROUNDIdentifying a quantitative biomarker of neuropsychiatric dysfunction in people with HIV (PWH) remains a significant challenge in the neuroHIV field. The strongest evidence to date implicates the role of monocytes in central nervous system (CNS) dysfunction in HIV, yet no study has examined monocyte subsets in blood as a correlate and/or predictor of neuropsychiatric function in virally suppressed PWH.METHODSIn 2 independent cohorts of virologically suppressed women with HIV (vsWWH; n = 25 and n = 18), whole blood samples were obtained either in conjunction with neuropsychiatric assessments (neuropsychological [NP] test battery, self-report depression and stress-related symptom questionnaires) or 1 year prior to assessments. Immune cell subsets were assessed by flow cytometry.RESULTSA higher proportion of intermediate monocytes (CD14+CD16+) was associated with lower global NP function when assessing monocytes concurrently and approximately 1 year before (predictive) NP testing. The same pattern was seen for executive function (mental flexibility) and processing speed. Conversely, there were no associations with monocyte subsets and depression or stress-related symptoms. Additionally, we found that a higher proportion of classical monocytes was associated with better cognition.CONCLUSIONAlthough it is widely accepted that lentiviral infection of the CNS targets cells of monocyte-macrophage-microglial lineage and is associated with an increase in intermediate monocytes in the blood and monocyte migration into the brain, the percentage of intermediate monocytes in blood of vsWWH has not been associated with neuropsychiatric outcomes. Our findings provide evidence for a new, easily measured, blood-based cognitive biomarker in vsWWH.FUNDINGR01-MH113512, R01-MH113512-S, P30-AI094189, R01-MH112391, R01-AI127142, R00-DA044838, U01-AI35004, and P30-MH075673.


Asunto(s)
Cognición , Depresión/inmunología , Infecciones por VIH/inmunología , Monocitos/inmunología , Estrés Psicológico/inmunología , Adulto , Fármacos Anti-VIH/uso terapéutico , Depresión/psicología , Función Ejecutiva , Femenino , Citometría de Flujo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/psicología , Humanos , Inmunofenotipificación , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estrés Psicológico/psicología , Respuesta Virológica Sostenida
8.
Semin Immunol ; 51: 101472, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648815

RESUMEN

The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD4-Positivos , Humanos , Macrófagos , Monocitos , Replicación Viral
9.
Mem. Inst. Oswaldo Cruz ; 116: e210237, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1356489

RESUMEN

BACKGROUND Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target genes by molecular methods has been chosen as the main approach to identify individuals with Coronavirus disease 2019 (COVID-19) infection. OBJECTIVES In this study, we developed an open-source RNA standard-based real-time quantitative RT-PCR (RT-qPCR) assay for quantitative diagnostics of SARS-CoV-2 from nasopharynx, oropharynx, saliva and plasma samples. METHODS AND FINDINGS We evaluated three SARS-CoV-2 target genes and selected the RNA-dependent RNA polymerase (RdRp) gene, given its better performance. To improve the efficiency of the assay, a primer gradient containing 25 primers forward and reverse concentration combinations was performed. The forward and reverse primer pairs with 400 nM and 500 nM concentrations, respectively, showed the highest sensitivity. The LOD95% was ~60 copies per reaction. From the four biological matrices tested, none of them interfered with the viral load measurement. Comparison with the AllplexTM 2019-nCoV assay (Seegene) demonstrated that our test presents 90% sensitivity and 100% specificity. MAIN CONCLUSIONS We developed an efficient molecular method able to measure absolute SARS-CoV-2 viral load with high replicability, sensitivity and specificity in different clinical samples.

10.
Gen Dent ; 68(5): 69-72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32857053

RESUMEN

This study aimed to evaluate the flexural strength (FS) and modulus of elasticity (ME) of 2 provisional resins at different thicknesses and after different storage periods. A total of 80 specimens were made of 2 provisional restorative materials (n = 40): Dencôr (DC) or Protemp 4 (PT). The specimens in each material group were prepared in 2 different thicknesses (n = 20): 1.5 mm or 2.0 mm. The groups were further subdivided by storage time (n = 10 per material thickness per time): 7 days or 3 months. A 3-point bending test was performed with a universal testing machine. Data were submitted to 3-way analysis of variance followed by a post hoc Tukey test (α = 0.05). Regarding the interaction of material and thickness, the 2.0-mm-thick DC specimens presented a significantly lower mean FS (41.08 MPa) than the other groups (P < 0.05). Regarding the interaction of material and storage time, PT after 3 months presented a significantly higher mean FS (75.51 MPa) than the other groups and periods (P < 0.05). Regardless of the material, the highest mean ME was found in the 1.5-mm-thick group after 3 months (2.24 GPa) (P < 0.05). The lowest ME values were found in the 2.0-mm-thick specimens after both storage times (7 days, 0.88 GPa; 3 months, 1.09 GPa), which were not significantly different from each other (P > 0.05). The correlation between FS and ME was direct and positive (R2 = 0.51; P < 0.001), independently of the variables (material, thickness, and time). Therefore, 2.0-mm-thick PT specimens presented the highest values of FS, mainly after 3 months. The ME was higher after 3 months (1.5-mm-thick specimens), regardless of the material. In addition, the higher the FS, the higher the ME of the material.


Asunto(s)
Materiales Dentales , Ensayo de Materiales , Docilidad , Estrés Mecánico , Propiedades de Superficie
11.
J Esthet Restor Dent ; 32(6): 575-580, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32170835

RESUMEN

OBJECTIVE: This study aimed to evaluate the color stability (ΔE00 ) of bis-acryl resins after different immersion solutions and storage time by different evaluation methods. MATERIALS AND METHODS: Sixty specimens (n = 30) were prepared from Protemp 4 and Structur 3. The specimens were divided into three groups (n = 10), according to the immersion solution (artificial saliva, cola beverage, and yerba mate tea) and evaluated at two storage times (7 and 14 days). The ΔE00 of each group was calculated using color coordinates obtained by a spectrophotometer and by a digital method, using the CIEDE2000 color difference formula. Data were analyzed by three-way ANOVA and Tukey test (α = 0.05). RESULTS: The 7-day period presented the lowest ΔE00 values, regardless of the material and solution evaluated for both evaluation methods (ΔE00 < 0.93; ΔE00 < 3.12). The immersion solution with the highest color change was yerba mate tea after 14 days (ΔE00 > 2.11). For digital analyses, all materials and solutions at both times presented ΔE00 values higher than the clinically acceptable (ΔE00 > 1.8), while in spectrophotometer only in yerba mate tea (14 days) Structur was above the clinical acceptability level. CONCLUSIONS: Yerba mate tea was the immersion solution with a higher color change in both materials and assessment methods. The highest values were found after 14 days of immersion, regardless of the solution. The ΔE00 for the digital method was higher than the spectrophotometer analysis. CLINICAL SIGNIFICANCE: It is important to identify the influence of staining beverages on interim materials used in patients requiring temporary rehabilitation. The use of a spectrophotometer seems to be more accurate than the digital method for the evaluation of color parameters of the tested materials.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Bebidas , Color , Humanos , Ensayo de Materiales , Propiedades de Superficie
12.
RGO (Porto Alegre) ; 68: e20200005, 2020. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1091885

RESUMEN

ABSTRACT Objective to analyze the surface roughness and color stability of the composite resin after surface treatment with the aluminum oxide discs and subsequent exposure to the Advanced Teeth Whitening Strips. Methods 20 specimens of the Filtek Z350XT restorer (3M®) were prepared and daily subjected to home bleaching for 30 minutes during 14 days. A precision rugosimeter was used in order to verify the roughness by means of 3 random readings in the same direction in each sample. For color stability the CIELAB system (L*, a*, b* values) was used through the spectrophotometer (MINOLTA CR -321, Japan). The means of the test specimens as well as the mean of each group were calculated using the random readings. Data statistical analysis were performed by ANOVA- analysis of variance. The level of significance was set at 5% (p ≤ 0.05). Results Roughness did not present great numerical variations. No statistically significant difference between the means obtained concerning the surface roughness of the composite resin with p = 0.44 was observed. However, it was found that there was a statistically significant difference between the means obtained in relation to the color stability of the composite resin, p=0. 007. Conclusion It was concluded that pre-contoured strips containing 6% hydrogen peroxide do not have a significant adverse effect on the roughness of Z350XT (3M®) resin. However, it was also concluded that according to the color stability analysis performed, there may be an indication of the restoration replacement after the bleaching treatment, due to their color change.


RESUMO Objetivo Analisar a rugosidade superficial e a estabilidade da cor da resina composta após tratamento de superfície com os discos de óxido de alumínio e posterior exposição à fita clareadora Advanced Teeth Whitening Strips. Métodos Foram confeccionados 20 corpos de prova do restaurador universal Filtek Z350XT (3M®), estes, foram submetidos ao clareamento caseiro por 30 minutos diários durante 14 dias. Utilizou-se um rugosímetro de precisão para verificação da rugosidade através de 3 leituras aleatórias no mesmo sentido em cada amostra, e para estabilidade de cor foi utilizado o sistema CIELAB (valores L*, a*, b*), através do espectofotômetro (MINOLTA CR-321, Japão). As leituras coletadas possibilitaram o cálculo das médias dos corpos de prova e a média de cada grupo. Em seguida, os dados foram submetidos a tratamento estatístico pela análise de variância ANOVA. O nível de significância estabelecido foi de 5% (p≤0,05). Resultados a rugosidade não sofreu grandes variações numéricas e também não houve diferença estatisticamente significantes entre as médias obtidas em relação a rugosidade superficial da resina composta (p=0,44). Contudo, verificou-se que houve diferenças estatisticamente significantes entre as medias obtidas em relação à estabilidade de cor da resina composta, com p= 0,007. Conclusão As fitas pré-contornadas contendo peróxido de hidrogênio a 6% não provocam efeito adverso significantes sobre a rugosidade da resina Z350XT (3M®). Contudo, também concluímos que, de acordo com a análise de estabilidade de cor realizada, poderá haver indicação da substituição das restaurações após o tratamento clareador devido à alteração na coloração das mesmas.

13.
AIDS ; 33 Suppl 2: S181-S188, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31789817

RESUMEN

: The current review examines the role of brain macrophages, that is perivascular macrophages and microglia, as a potential viral reservoir in antiretroviral therapy (ART) treated, simian immunodeficiency virus (SIV)-infected macaques. The role, if any, of latent viral reservoirs of HIV and SIV in the central nervous system during ART suppression is an unresolved issue. HIV and SIV infect both CD4 lymphocytes and myeloid cells in blood and tissues during acute and chronic infection. HIV spread to the brain occurs during acute infection by the infiltration of activated CD4 lymphocytes and monocytes from blood and is established in both embryonically derived resident microglia and monocyte-derived perivascular macrophages. ART controls viral replication in peripheral blood and cerebrospinal fluid in HIV-infected individuals but does not directly eliminate infected cells in blood, tissues or brain. Latently infected resting CD4 lymphocytes in blood and lymphoid tissues are a well recognized viral reservoir that can rebound once ART is withdrawn. In contrast, central nervous system resident microglia and perivascular macrophages in brain have not been examined as potential reservoirs for HIV during suppressive ART. Macrophages in tissues are long-lived cells that are HIV and SIV infected in tissues such as gut, lung, spleen, lymph node and brain and contribute to ongoing inflammation in tissues. However, their potential role in viral persistence and latency or their potential to rebound in the absence ART has not been examined. It has been shown that measurement of HIV latency by HIV DNA PCR in CD4 lymphocytes overestimates the size of the latent reservoirs of HIV that contribute to rebound that is cells containing the genomes of replicative viruses. Thus, the quantitative viral outgrowth assay has been used as a reliable measure of the number of latent cells that harbor infectious viral DNA and, may constitute a functional latent reservoir. Using quantitative viral outgrowth assays specifically designed to quantitate latently infected CD4 lymphocytes and myeloid cells in an SIV macaque model, we demonstrated that macrophages in brain harbor SIV genomes that reactivate and produce infectious virus in this assay, demonstrating that these cells have the potential to be a reservoir.


Asunto(s)
Encéfalo/virología , Macrófagos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus , Animales , Antirretrovirales/uso terapéutico , Encéfalo/inmunología , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/tratamiento farmacológico , Humanos , Macaca mulatta , Células Mieloides/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral , Replicación Viral
14.
mBio ; 10(4)2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431552

RESUMEN

Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies.IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.


Asunto(s)
Antirretrovirales/farmacología , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , Macrófagos/virología , Células Mieloides/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Latencia del Virus , Animales , Modelos Animales de Enfermedad , Genoma Viral , Pulmón , Macaca mulatta , Masculino , Monocitos , Virus de la Inmunodeficiencia de los Simios/genética , Bazo , Carga Viral , Replicación Viral
15.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31118264

RESUMEN

Understanding the cellular and anatomical sites of latent virus that contribute to human immunodeficiency virus (HIV) rebound is essential for eradication. In HIV-positive patients, CD4+ T lymphocytes comprise a well-defined functional latent reservoir, defined as cells containing transcriptionally silent genomes able to produce infectious virus once reactivated. However, the persistence of infectious latent virus in CD4+ T cells in compartments other than blood and lymph nodes is unclear. Macrophages (Mϕ) are infected by HIV/simian immunodeficiency virus (SIV) and are likely to carry latent viral genomes during antiretroviral therapy (ART), contributing to the reservoir. Currently, the gold standard assay used to measure reservoirs containing replication-competent virus is the quantitative viral outgrowth assay (QVOA). Using an SIV-macaque model, the CD4+ T cell and Mϕ functional latent reservoirs were measured in various tissues using cell-specific QVOAs. Our results showed that blood, spleen, and lung in the majority of suppressed animals contain latently infected Mϕs. Surprisingly, the numbers of CD4+ T cells, monocytes, and Mϕs carrying infectious genomes in blood and spleen were at comparable frequencies (∼1 infected cell per million). We also demonstrate that ex vivo viruses produced in the Mϕ QVOA are capable of infecting activated CD4+ T cells. These results strongly suggest that latently infected tissue Mϕs can reestablish productive infection upon treatment interruption. This study provides the first comparison of CD4+ T cell and Mϕ functional reservoirs in a macaque model. It is the first confirmation of the persistence of latent genomes in monocytes in blood and Mϕs in the spleen and lung of SIV-infected ART-suppressed macaques. Our results demonstrate that transcriptionally silent genomes in Mϕs can contribute to viral rebound after ART interruption and should be considered in future HIV cure strategies.IMPORTANCE This study suggests that CD4+ T cells found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. In addition, this study demonstrates that macrophages in tissues are another cellular reservoir for SIV and may contribute to viral rebound after treatment interruption. This new insight into the size and location of the SIV reservoir could have great implications for HIV-infected individuals and should be taken into consideration for the development of future HIV cure strategies.


Asunto(s)
Antirretrovirales/administración & dosificación , Linfocitos T CD4-Positivos/virología , Macrófagos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus , Animales , Células Sanguíneas/virología , Células Cultivadas , Pulmón/virología , Macaca , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Bazo/virología
16.
J Neuroimmune Pharmacol ; 14(1): 23-32, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30167896

RESUMEN

Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.


Asunto(s)
Encéfalo/virología , Infecciones por VIH/virología , Macrófagos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Latencia del Virus/fisiología , Animales , VIH/fisiología , Humanos , Virus de la Inmunodeficiencia de los Simios/fisiología
17.
Curr Top Microbiol Immunol ; 417: 111-130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29770863

RESUMEN

Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.


Asunto(s)
Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Macaca mulatta/virología , Macrófagos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus , Animales , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , Humanos , Carga Viral
18.
Front Microbiol ; 9: 2766, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619100

RESUMEN

Human induced pluripotent stem cells (iPSCs), together with 21st century cell culture methods, have the potential to better model human physiology with applications in toxicology, disease modeling, and the study of host-pathogen interactions. Several models of the human brain have been developed recently, demonstrating cell-cell interactions of multiple cell types with physiologically relevant 3D structures. Most current models, however, lack the ability to represent the inflammatory response in the brain because they do not include a microglial cell population. Microglia, the resident immunocompetent phagocytes in the central nervous system (CNS), are not only important in the inflammatory response and pathogenesis; they also function in normal brain development, strengthen neuronal connections through synaptic pruning, and are involved in oligodendrocyte and neuronal survival. Here, we have successfully introduced a population of human microglia into 3D human iPSC-derived brain spheres (BrainSpheres, BS) through co-culturing cells of the Immortalized Human Microglia - SV40 cell line with the BS model (µBS). We detected an inflammatory response to lipopolysaccharides (LPS) and flavivirus infection, which was only elicited in the model when microglial cells were present. A concentration of 20 ng/mL of LPS increased gene expression of the inflammatory cytokines interleukin-6 (IL-6), IL-10, and IL-1ß, with maximum expression at 6-12 h post-exposure. Increased expression of the IL-6, IL-1ß, tumor necrosis factor alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) genes was observed in µBS following infection with Zika and Dengue Virus, suggesting a stronger inflammatory response in the model when microglia were present than when only astrocyte, oligodendrocyte, and neuronal populations were represented. Microglia innately develop within cerebral organoids (Nature communications), our findings suggest that the µBS model is more physiologically relevant and has potential applications in infectious disease and host-pathogen interactions research.

19.
J Neurovirol ; 24(2): 204-212, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28975505

RESUMEN

Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.


Asunto(s)
Antivirales/farmacología , Sistema Nervioso Central/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Complejo SIDA Demencia/tratamiento farmacológico , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/fisiopatología , Complejo SIDA Demencia/virología , Animales , Terapia Antirretroviral Altamente Activa , Sistema Nervioso Central/virología , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/virología , Humanos , Macaca nemestrina , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/virología , Carga Viral/efectos de los fármacos , Latencia del Virus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...