Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 350: 44-53, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29751018

RESUMEN

The interaction between distinctive nitric oxide synthase (NOS) isoforms and the dopamine system provides new avenues to the development of pharmacological tools for the pathophysiological conditions of the dopaminergic system. Our aim was to investigate the influences of dopamine-induced effects in inducible NOS knockout (iNOS KO) mice. In order to characterize iNOS KO mice phenotype, the animals were submitted to the basal analyses of motor, sensorimotor and sensorial abilities. Pharmacological challenging of the dopaminergic system included the investigation of amphetamine-induced prepulse inhibition (PPI) disruption, haloperidol-induced catalepsy, reserpine-induced oral involuntary movements and hyperlocomotion induced by amphetamine in reserpine treated mice. The iNOS KO mice showed significant reduction of spontaneous motor activity, but there was no significant difference in sensorimotor or sensorial responses of iNOS KO mice compared to wild type (WT). Regarding the dopaminergic system, iNOS KO mice showed a significant increase of haloperidol-induced catalepsy. This effect was confirmed through an iNOS pharmacological inhibitor (1400 W) in WT mice. In addition, iNOS KO reserpine treated mice showed reduced oral involuntary movements and amphetamine-induced hyperlocomotion. Knowing that iNOS is mainly expressed in glial cells we analyzed the immunoreactivity (ir) for GFAP (astrocyte marker) and IBA-1 (microglial marker) in the striatum, an area enrolled in motor planning among other functions. iNOS KO presented reduced GFAP-ir and IBA-1-ir compared with WT. Reserpine treatment increased GFAP-ir in both WT and iNOS KO. However, these effects were slighter in iNOS KO. Activated state of microglia was increased by reserpine only in WT mice. Our results further demonstrated that the absence of iNOS interfered with dopamine-mediated behavioral and molecular responses. These results increase the understanding of the dopamine and NO system interaction, which is useful for the management of the dopamine-related pathologies.


Asunto(s)
Dopamina/metabolismo , Conducta Exploratoria/fisiología , Neuroglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/deficiencia , Anfetamina/farmacología , Animales , Fármacos del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Conducta Exploratoria/efectos de los fármacos , Haloperidol/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuroglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Reserpina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA