Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(9): 1314-1322, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653243

RESUMEN

Translation affects messenger RNA stability and, in yeast, this is mediated by the Ccr4-Not deadenylation complex. The details of this process in mammals remain unclear. Here, we use cryogenic electron microscopy (cryo-EM) and crosslinking mass spectrometry to show that mammalian CCR4-NOT specifically recognizes ribosomes that are stalled during translation elongation in an in vitro reconstituted system with rabbit and human components. Similar to yeast, mammalian CCR4-NOT inserts a helical bundle of its CNOT3 subunit into the empty E site of the ribosome. Our cryo-EM structure shows that CNOT3 also locks the L1 stalk in an open conformation to inhibit further translation. CCR4-NOT is required for stable association of the nonconstitutive subunit CNOT4, which ubiquitinates the ribosome, likely to signal stalled translation elongation. Overall, our work shows that human CCR4-NOT not only detects but also enforces ribosomal stalling to couple translation and mRNA decay.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Animales , Conejos , Mamíferos , Ribosomas , Ubiquitinación , Espectrometría de Masas , Factores de Transcripción , Receptores CCR4 , Ribonucleasas
2.
Mol Cell ; 83(13): 2290-2302.e13, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37295431

RESUMEN

Microtubules play crucial roles in cellular architecture, intracellular transport, and mitosis. The availability of free tubulin subunits affects polymerization dynamics and microtubule function. When cells sense excess free tubulin, they trigger degradation of the encoding mRNAs, which requires recognition of the nascent polypeptide by the tubulin-specific ribosome-binding factor TTC5. How TTC5 initiates the decay of tubulin mRNAs is unknown. Here, our biochemical and structural analysis reveals that TTC5 recruits the poorly studied protein SCAPER to the ribosome. SCAPER, in turn, engages the CCR4-NOT deadenylase complex through its CNOT11 subunit to trigger tubulin mRNA decay. SCAPER mutants that cause intellectual disability and retinitis pigmentosa in humans are impaired in CCR4-NOT recruitment, tubulin mRNA degradation, and microtubule-dependent chromosome segregation. Our findings demonstrate how recognition of a nascent polypeptide on the ribosome is physically linked to mRNA decay factors via a relay of protein-protein interactions, providing a paradigm for specificity in cytoplasmic gene regulation.


Asunto(s)
Ribosomas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Microtúbulos/metabolismo , Homeostasis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Proteínas Portadoras/metabolismo , Factores de Transcripción/metabolismo
3.
Sci Rep ; 11(1): 21346, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725424

RESUMEN

The molecular chaperones Hsc70 and Hsp90 are required for proteostasis control and specific folding of client proteins in eukaryotic and prokaryotic organisms. Especially in eukaryotes these ATP-driven molecular chaperones are interacting with cofactors that specify the client spectrum and coordinate the ATPase cycles. Here we find that a Hsc70-cofactor of the Hsp40 family from nematodes, DNJ-13, directly interacts with the kinase-specific Hsp90-cofactor CDC-37. The interaction is specific for DNJ-13, while DNJ-12 another DnaJ-like protein of C. elegans, does not bind to CDC-37 in a similar manner. Analytical ultracentrifugation is employed to show that one CDC-37 molecule binds to a dimeric DNJ-13 protein with low micromolar affinity. We perform cross-linking studies with mass spectrometry to identify the interaction site and obtain specific cross-links connecting the N-terminal J-domain of DNJ-13 with the N-terminal domain of CDC-37. Further AUC experiments reveal that both, the N-terminal part of CDC-37 and the C-terminal domain of CDC-37, are required for efficient interaction. Furthermore, the presence of DNJ-13 strengthens the complex formation between CDC-37 and HSP-90 and modulates the nucleotide-dependent effects. These findings on the interaction between Hsp40 proteins and Hsp90-cofactors provide evidence for a more intricate interaction between the two chaperone systems during client processing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Animales , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Proteínas de Ciclo Celular/química , Proteínas del Choque Térmico HSP40/química , Proteínas HSP90 de Choque Térmico/química , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Mapas de Interacción de Proteínas
4.
J Biol Chem ; 297(1): 100829, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34048711

RESUMEN

Brr2 is an essential Ski2-like RNA helicase that exhibits a unique structure among the spliceosomal helicases. Brr2 harbors a catalytically active N-terminal helicase cassette and a structurally similar but enzymatically inactive C-terminal helicase cassette connected by a linker region. Both cassettes contain a nucleotide-binding pocket, but it is unclear whether nucleotide binding in these two pockets is related. Here we use biophysical and computational methods to delineate the functional connectivity between the cassettes and determine whether occupancy of one nucleotide-binding site may influence nucleotide binding at the other cassette. Our results show that Brr2 exhibits high specificity for adenine nucleotides, with both cassettes binding ADP tighter than ATP. Adenine nucleotide affinity for the inactive C-terminal cassette is more than two orders of magnitude higher than that of the active N-terminal cassette, as determined by slow nucleotide release. Mutations at the intercassette surfaces and in the connecting linker diminish the affinity of adenine nucleotides for both cassettes. Moreover, we found that abrogation of nucleotide binding at the C-terminal cassette reduces nucleotide binding at the N-terminal cassette 70 Å away. Molecular dynamics simulations identified structural communication lines that likely mediate these long-range allosteric effects, predominantly across the intercassette interface. Together, our results reveal intricate networks of intramolecular interactions in the complex Brr2 RNA helicase, which fine-tune its nucleotide affinities and which could be exploited to regulate enzymatic activity during splicing.


Asunto(s)
Nucleótidos de Adenina/metabolismo , ARN Helicasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Aminoácidos/metabolismo , Sitios de Unión , Humanos , Cinética , Simulación de Dinámica Molecular , Mutación/genética , Dominios Proteicos , Ribonucleoproteínas Nucleares Pequeñas/química , Especificidad por Sustrato
5.
Methods Mol Biol ; 2209: 193-215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33201471

RESUMEN

Functional aspects of nucleic acid helicases can be interrogated by various in vitro methods, using purified components, including nucleic acid binding and unwinding assays. Here we describe detailed protocols for the production and purification of the spliceosomal Ski2-like RNA helicase, Brr2, and one of its regulatory factors, the Jab1 domain of the Prp8 protein from yeast. Furthermore, we include a production protocol for radioactively labeled yeast U4/U6 di-snRNA substrate. We describe polyacrylamide gel-based assays to investigate Brr2's RNA binding and unwinding activities. The purification protocols and activity assays can be easily adapted for the purification and functional interrogation of other helicases, cofactors, and RNA substrates.


Asunto(s)
ARN Helicasas/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Unión Proteica , Empalme del ARN , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
6.
Nat Commun ; 11(1): 5535, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139697

RESUMEN

The ASCC3 subunit of the activating signal co-integrator complex is a dual-cassette Ski2-like nucleic acid helicase that provides single-stranded DNA for alkylation damage repair by the α-ketoglutarate-dependent dioxygenase AlkBH3. Other ASCC components integrate ASCC3/AlkBH3 into a complex DNA repair pathway. We mapped and structurally analyzed interacting ASCC2 and ASCC3 regions. The ASCC3 fragment comprises a central helical domain and terminal, extended arms that clasp the compact ASCC2 unit. ASCC2-ASCC3 interfaces are evolutionarily highly conserved and comprise a large number of residues affected by somatic cancer mutations. We quantified contributions of protein regions to the ASCC2-ASCC3 interaction, observing that changes found in cancers lead to reduced ASCC2-ASCC3 affinity. Functional dissection of ASCC3 revealed similar organization and regulation as in the spliceosomal RNA helicase Brr2. Our results delineate functional regions in an important DNA repair complex and suggest possible molecular disease principles.


Asunto(s)
ADN Helicasas/genética , Reparación del ADN , Neoplasias/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Secuencia Conservada/genética , ADN Helicasas/aislamiento & purificación , ADN Helicasas/metabolismo , Células HEK293 , Humanos , Mutación , Proteínas Nucleares/aislamiento & purificación , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Conformación Proteica en Hélice alfa/genética , Dominios Proteicos/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/metabolismo
7.
Nucleic Acids Res ; 48(8): 4572-4584, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32196113

RESUMEN

The single G protein of the spliceosome, Snu114, has been proposed to facilitate splicing as a molecular motor or as a regulatory G protein. However, available structures of spliceosomal complexes show Snu114 in the same GTP-bound state, and presently no Snu114 GTPase-regulatory protein is known. We determined a crystal structure of Snu114 with a Snu114-binding region of the Prp8 protein, in which Snu114 again adopts the same GTP-bound conformation seen in spliceosomes. Snu114 and the Snu114-Prp8 complex co-purified with endogenous GTP. Snu114 exhibited weak, intrinsic GTPase activity that was abolished by the Prp8 Snu114-binding region. Exchange of GTP-contacting residues in Snu114, or of Prp8 residues lining the Snu114 GTP-binding pocket, led to temperature-sensitive yeast growth and affected the same set of splicing events in vivo. Consistent with dynamic Snu114-mediated protein interactions during splicing, our results suggest that the Snu114-GTP-Prp8 module serves as a relay station during spliceosome activation and disassembly, but that GTPase activity may be dispensable for splicing.


Asunto(s)
Guanosina Trifosfato/química , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U5/química , Proteínas de Saccharomyces cerevisiae/química , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Modelos Moleculares , Conformación Proteica , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Structure ; 28(2): 236-243.e3, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31859026

RESUMEN

RNA-dependent NTPases can act as RNA/RNA-protein remodeling enzymes and typically exhibit low NTPase activity in the absence of RNA/RNA-protein substrates. How futile intrinsic NTP hydrolysis is prevented is frequently not known. The ATPase/RNA helicase Brr2 belongs to the Ski2-like family of nucleic acid-dependent NTPases and is an integral component of the spliceosome. Comprehensive nucleotide binding and hydrolysis studies are not available for a member of the Ski2-like family. We present crystal structures of Chaetomium thermophilum Brr2 in the apo, ADP-bound, and ATPγS-bound states, revealing nucleotide-induced conformational changes and a hitherto unknown ATPγS binding mode. Our results in conjunction with Brr2 structures in other molecular contexts reveal multiple molecular mechanisms that contribute to the inhibition of intrinsic ATPase activity, including an N-terminal region that restrains the RecA-like domains in an open conformation and exclusion of an attacking water molecule, and suggest how RNA substrate binding can lead to ATPase stimulation.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Chaetomium/enzimología , ARN Helicasas/química , ARN Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Chaetomium/química , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos
9.
Structure ; 26(11): 1462-1473.e4, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30174149

RESUMEN

Eukaryotic DExH-box proteins are important post-transcriptional gene regulators, many of which employ RNA-stimulated nucleoside triphosphatase activity to remodel RNAs or ribonucleoprotein complexes. However, bacterial DExH-box proteins are structurally and functionally poorly characterized. We report the crystal structure of the Escherichia coli DExH-box protein HrpB. A globular head is composed of dual RecA, winged-helix, helical bundle and oligonucleotide/oligosaccharide-binding domains, resembling a compact version of eukaryotic DExH-box proteins. Additionally, HrpB harbors a C-terminal region not found in proteins with known structure, which bestows the protein with unique interaction potential. Interaction and activity assays showed that the protein binds RNA but not DNA, hydrolyzes all nucleoside triphosphates in an RNA-stimulated manner, but does not unwind diverse model RNAs in vitro. These observations can be rationalized by detailed comparisons with structurally characterized eukaryotic DExH-box proteins. Comparative phenotypic analyses of an E. coli hrpB knockout mutant suggested diverse functions of HrpB homologs in different bacteria.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Oligosacáridos/metabolismo , ARN Bacteriano/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Nucleósido-Trifosfatasa/genética , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Especificidad por Sustrato
10.
Cell Cycle ; 16(1): 100-112, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27880071

RESUMEN

RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.


Asunto(s)
ARN Helicasas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Empalmosomas/metabolismo , Secuencia de Aminoácidos , Chaetomium , Secuencia Conservada , Cristalografía por Rayos X , Evolución Molecular , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , ARN Helicasas/química , ARN de Hongos/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología Estructural de Proteína
11.
Cell Cycle ; 15(24): 3362-3377, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27792457

RESUMEN

Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.


Asunto(s)
ARN Helicasas/metabolismo , Empalme del ARN/genética , Animales , Humanos , Modelos Biológicos , Modelos Moleculares , ARN Helicasas/química , ARN Helicasas/genética , Ribonucleoproteínas/metabolismo
12.
Genes Dev ; 29(24): 2576-87, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637280

RESUMEN

The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation.


Asunto(s)
Modelos Moleculares , ARN Helicasas/química , ARN Helicasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/enzimología , Adenosina Trifosfatasas/metabolismo , Chaetomium/enzimología , Chaetomium/genética , Cristalización , Humanos , Unión Proteica , Pliegue de Proteína , Empalme de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 762-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849387

RESUMEN

The spliceosomal RNA helicase Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. Brr2 exhibits an unusual organization with tandem helicase units, each comprising dual RecA-like domains and a Sec63 homology unit, preceded by a more than 400-residue N-terminal helicase-associated region. Whereas recent crystal structures have provided insights into the molecular architecture and regulation of the Brr2 helicase region, little is known about the structural organization and function of its N-terminal part. Here, a near-atomic resolution crystal structure of a PWI-like domain that resides in the N-terminal region of Chaetomium thermophilum Brr2 is presented. CD spectroscopic studies suggested that this domain is conserved in the yeast and human Brr2 orthologues. Although canonical PWI domains act as low-specificity nucleic acid-binding domains, no significant affinity of the unusual PWI domain of Brr2 for a broad spectrum of DNAs and RNAs was detected in band-shift assays. Consistently, the C. thermophilum Brr2 PWI-like domain, in the conformation seen in the present crystal structure, lacks an expanded positively charged surface patch as observed in at least one canonical, nucleic acid-binding PWI domain. Instead, in a comprehensive yeast two-hybrid screen against human spliceosomal proteins, fragments of the N-terminal region of human Brr2 were found to interact with several other spliceosomal proteins. At least one of these interactions, with the Prp19 complex protein SPF27, depended on the presence of the PWI-like domain. The results suggest that the N-terminal region of Brr2 serves as a versatile protein-protein interaction platform in the spliceosome and that some interactions require or are reinforced by the PWI-like domain.


Asunto(s)
Chaetomium/química , Proteínas Fúngicas/química , Secuencia de Aminoácidos , Chaetomium/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , ARN Helicasas/química , ARN Helicasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Empalmosomas/química , Empalmosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...