Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
PLoS One ; 19(2): e0296467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38329954

RESUMEN

The identification and prediction of athletic talent are pivotal in the development of successful sporting careers. Traditional subjective assessment methods have proven unreliable due to their inherent subjectivity, prompting the rise of data-driven techniques favoured for their objectivity. This evolution in statistical analysis facilitates the extraction of pertinent athlete information, enabling the recognition of their potential for excellence in their respective sporting careers. In the current study, we applied a logistic regression-based machine learning pipeline (LR) to identify potential skateboarding athletes from a combination of fitness and motor skills performance variables. Forty-five skateboarders recruited from a variety of skateboarding parks were evaluated on various skateboarding tricks while their fitness and motor skills abilities that consist of stork stance test, dynamic balance, sit ups, plank test, standing broad jump, as well as vertical jump, were evaluated. The performances of the skateboarders were clustered and the LR model was developed to classify the classes of the skateboarders. The cluster analysis identified two groups of skateboarders: high and low potential skateboarders. The LR model achieved 90% of mean accuracy specifying excellent prediction of the skateboarder classes. Further sensitivity analysis revealed that static and dynamic balance, lower body strength, and endurance were the most important factors that contributed to the model's performance. These factors are therefore essential for successful performance in skateboarding. The application of machine learning in talent prediction can greatly assist coaches and other relevant stakeholders in making informed decisions regarding athlete performance.


Asunto(s)
Rendimiento Atlético , Patinación , Humanos , Modelos Logísticos , Aptitud Física , Ejercicio Físico
2.
Prosthet Orthot Int ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018968

RESUMEN

Prosthetic alignment is a highly subjective process that is still based on clinical judgments. Thus, researchers have aimed their effort to quantify prosthetic alignment by providing an objective method that can assist and guide prosthetists in achieving transtibial (TT) prosthetic alignment. This systematic review aimed to examine the current literature on TT prosthetic alignment to scope the qualitative and quantitative methods designed to guide prosthetists throughout the TT prosthetic alignment process as well as evaluate the reported instruments and devices that are used to align TT prostheses and their clinical feasibility. A literature search, completed in June 2022, was performed using the following databases: Web of Science (Clarivate), SCOPUS (Elsevier), and Pub Med (Medline) with searching terms focusing on TT, prosthesis, prosthetist, prosthetic alignment, and questionnaires, resulting in 2790 studies being screened. Twenty-four studies have used quantitative methodologies, where sensor technologies were found to be the most frequently proposed technology combined with gait analysis tools and/or subjective assessments. A qualitative method that assists prosthetists throughout the alignment process was not found. In this systematic review, we presented diverse methods for guiding and assisting clinical decision-making regarding TT prosthetic alignment. However, most of these methods considered varied parameters, and there is a need for elaboration toward standardized methods, which would improve the prosthetic alignment clinical outcome.

3.
Phys Eng Sci Med ; 46(4): 1723-1739, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870729

RESUMEN

Assessment of the prosthetic gait is an important clinical approach to evaluate the quality and functionality of the prescribed lower limb prosthesis as well as to monitor rehabilitation progresses following limb amputation. Limited access to quantitative assessment tools generally affects the repeatability and consistency of prosthetic gait assessments in clinical practice. The rapidly developing wearable technology industry provides an alternative to objectively quantify prosthetic gait in the unconstrained environment. This study employs a neural network-based model in estimating three-dimensional body segmental orientation of the lower limb amputees during gait. Using a wearable system with inertial sensors attached to the lower limb segments, thirteen individuals with lower limb amputation performed two-minute walk tests on a robotic foot and a passive foot. The proposed model replicates features of a complementary filter to estimate drift free three-dimensional orientation of the intact and prosthetic limbs. The results indicate minimal estimation biases and high correlation, validating the ability of the proposed model to reproduce the properties of a complementary filter while avoiding the drawbacks, most notably in the transverse plane due to gravitational acceleration and magnetic disturbance. Results of this study also demonstrates the capability of the well-trained model to accurately estimate segmental orientation, regardless of amputation level, in different types of locomotion task.


Asunto(s)
Marcha , Extremidad Inferior , Humanos , Pie , Amputación Quirúrgica , Redes Neurales de la Computación
4.
Materials (Basel) ; 16(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36676604

RESUMEN

Hydrazine borane (HB) is a chemical hydrogen storage material with high gravimetric hydrogen density of 15.4 wt%, containing both protic and hydridic hydrogen. However, its limitation is the formation of unfavorable gaseous by-products, such as hydrazine (N2H4) and ammonia (NH3), which are poisons to fuel cell catalyst, upon pyrolysis. Previous studies proved that confinement of ammonia borane (AB) greatly improved the dehydrogenation kinetics and thermodynamics. They function by reducing the particle size of AB and establishing bonds between silica functional groups and AB molecules. In current study, we employed the same strategy using MCM-41 and silica aerogel to investigate the effect of nanosizing towards the hydrogen storage properties of HB. Different loading of HB to the porous supports were investigated and optimized. The optimized loading of HB in MCM-41 and silica aerogel was 1:1 and 0.25:1, respectively. Both confined samples demonstrated great suppression of melting induced sample foaming. However, by-products formation was enhanced over dehydrogenation in an open system decomposition owing to the presence of extensive Si-O···BH3(HB) coordination that further promote the B-N bond cleavage to release N2H4. The Si-OH···N(N2H4) hydrogen bonding may further promote N-N bond cleavage in the resulting N2H4, facilitating the formation of NH3. As temperature increases, the remaining N-N-B oligomeric chains in the porous silica, which are lacking the long-range structure may further undergo intramolecular B-N or N-N cleavage to release substantial amount of N2H4 or NH3. Besides open system decomposition, we also reported a closed system decomposition where complete utilization of the N-H from the released N2H4 and NH3 in the secondary reaction can be achieved, releasing mainly hydrogen upon being heated up to high temperatures. Nanosizing of HB particles via PMMA encapsulation was also attempted. Despite the ester functional group that may favor multiple coordination with HB molecules, these interactions did not impart significant change towards the decomposition of HB selectively towards dehydrogenation.

5.
Polymers (Basel) ; 15(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36679135

RESUMEN

3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength. With the same mass, specimens with triangular fill have a higher compressive strength than those with rectangular and gyroid fills. Compared with specimens with a solid fill, specimens with a triangular fill can also provide more compressive strength in a unit mass. According to the results of standard specimens, following the requirement of strength and lightweight, 41% triangular fill is selected to manufacture the supporting part of a powered ankle-foot prosthesis. Under a compressive load of 1225 N, the strain of the assembly of the standard adaptor and the 3D-printed part is 1.32 ± 0.04%, which can meet the requirement of the design. This study can provide evidence for other 3D-printed applications with the requirement of compressive strength.

6.
Ghana Med. J. (Online) ; 57(2): 134-140, 2023. figures, tables
Artículo en Inglés | AIM (África) | ID: biblio-1436300

RESUMEN

Objective: We determined the incidence of blood culture-related sepsis, causative bacteria, and antibiotics sensitivity among newborn babies with suggestive signs of sepsis admitted at the Upper East Regional Hospital in Bolgatanga, Ghana. Design: Prospective cross-sectional study Setting: Newborn Care Unit of the Upper East Regional Hospital, Bolgatanga Participants: Neonates admitted to the Newborn Care Unit from August 2019 to August 2020 with signs of sepsis Main outcome measures: Organisms isolated from blood cultures and sensitivity of isolated organisms to antibiotics. Results: The study included two hundred and seventy-six (276) patients. Laboratory confirmed sepsis was 13.4% (37/276). Early onset sepsis was 3.3% (9/276), while late-onset sepsis was 10.1% (28/276). The most common clinical signs associated with positive culture cases were temperature instability (35.5%), poor feeding (14.5%), neonatal jaundice (11.3%), vomiting (9.7%), and respiratory distress (8.1%). Staphylococcus aureus and Staphylococcus epidermidis were the most common bacterial isolates (46% and 32%, respectively). There was no relationship between independent variables and blood culture confirmed sepsis. Antibiotics to which isolates were most resistant included flucloxacillin 4/4, penicillin 14/15, ampicillin 16/18, and tetracycline 23/28. Bacterial isolates were most sensitive to amikacin 16/16, levofloxacin 5/5, erythromycin 8/8, cefazolin 7/8, and ciprofloxacin 18/24. Conclusion: Late-onset sepsis is a common sepsis category, and the implicated microorganisms are resistant to commonly prescribed antibiotics.


Asunto(s)
Masculino , Femenino , Recién Nacido , Lactante
7.
Qual Quant ; : 1-24, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35971418

RESUMEN

Without proper preparation by higher institutions, the COVID-19 pandemic has forced the world to rely on online learning. Even students of social science and science are looking for different knowledge and skills. Currently, both groups rely on the same method to gather knowledge for future undertakings. Given the uncertainty regarding the resolution of COVID-19, which has driven students to continue using online learning, the current study aims to identify the factors of willingness to continue online learning among social science and pure science students by extending the use of expectation-confirmation theory. Applying a purposive sampling method, 2,215 questionnaires were collected among undergraduate students from Universiti Malaysia Terengganu (UMT) using an online survey. Current study found that expectation and confirmation positively affect satisfaction. Attitude, satisfaction and readiness were found to have a positive relationship with willingness to continue online learning. Meanwhile, self-efficacy was found unsupported hypothesis for the direct effect. For multigroup analysis, readiness was found to have a significant difference between students of social science and pure science. The findings of this research enrich the literature about online learning, especially in the COVID-19 setting. Moreover, this work is useful for higher education institutions seeking to design a better strategy that allows students to return to campus.

8.
Front Public Health ; 10: 835119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033746

RESUMEN

The non-complexity of tennis, coupled with its health benefits, renders it appealing and encourages varying competitions at different levels of age, gender, and expertise. However, the rapid increase in the participation rates witnesses a surge in injury occurrences, prompting the need for in-depth analysis to facilitate immediate intervention. We employed a media content analysis technique in which tennis-associated articles published in the last 5 years were examined. A total of 207 news reports were gathered and screened for analysis. Subsequently, 71 articles were excluded from the study due to content duplications or summary updates of existing news articles, while 23 news articles were also excluded from the study due to inappropriateness. Finally, 113 news reports directly related to injury in tennis were coded and analyzed. We examined various types of injuries reported from the screened articles with respect to their status (fresh, recurrent, and recovery) across expertise levels i.e., elite, or amateur. Similarly, the incidence of injury occurrences based on the types of tournaments the players engage in was also investigated. A chi-square analysis was employed to achieve the objectives of the study. Occurrences of tennis-associated injuries are disseminated across expertise levels [ χ ( 18 ) 2 = 16.542; p = 0.555], with knee, hip, elbow, and shoulder injuries being highly prevalent in both elite and amateur players. Nevertheless, it was noted that elite players suffered a staggering 72.60% of injury-related problems, while amateur players sustained 27.40% of injuries. Moreover, the status of injury spreads based on types of tournaments [ χ ( 4 ) 2 = 3.374; p = 0.497], with higher occurrences of fresh and recurrent injuries, while low recovery rates were observed. The findings further demonstrated that injuries are sustained regardless of tournament types [ χ ( 36 ) 2 = 39.393; p = 0.321]. However, most of the injuries occurred at international tournaments (85%). Whereas, only 5.30% of the injuries occurred at national/regional tournaments while 9.70% were unidentified. It could be deduced from the findings of this investigation that elite players are more prone to injuries compared with amateur players. Furthermore, the most common tennis-related injuries affect the lower, trunk, and upper regions of the body, respectively. A large number of the reported tennis injuries are fresh and recurrent, with a few recoveries. The international tennis tournaments are highly attributed to injury occurrences as opposed to the national/regional tournaments. The application of the media-based data mining technique is non-trivial in projecting injury-related problems that could be used to facilitate the development of an injury index peculiar to the tennis sport for prompt intervention.


Asunto(s)
Tenis , Atletas , Electrónica , Humanos , Incidencia
9.
Sci Rep ; 12(1): 11217, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780242

RESUMEN

Planar spiral spring is important for the dimensional miniaturisation of motor-based elastic actuators. However, when the stiffness calculation of the spring arm is based on simple beam bending theory, the results possess substantial errors compared with the stiffness obtained from finite-element analysis (FEA). It deems that the errors arise from the spiral length term in the calculation formula. Two Gaussian process regression models are trained to amend this term in the stiffness calculation of spring arm and complete spring. For the former, 216 spring arms' data sets, including different spiral radiuses, pitches, wrap angles and the stiffness from FEA, are employed for training. The latter engages 180 double-arm springs' data sets, including widths instead of wrap angles. The simulation of five spring arms and five planar spiral springs with arbitrary dimensional parameters verifies that the absolute values of errors between the predicted stiffness and the stiffness from FEA are reduced to be less than 0.5% and 2.8%, respectively. A planar spiral spring for a powered ankle-foot prosthesis is designed and manufactured to verify further, of which the predicted value possesses a 3.25% error compared with the measured stiffness. Therefore, the amendment based on the prediction of trained models is available.

10.
Eur J Phys Rehabil Med ; 58(4): 612-620, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35044131

RESUMEN

INTRODUCTION: Virtual reality has recently become a popular application for rehabilitation and motor control research. This technology has emerged as a valid addition to conventional therapy and promises a successful rehabilitation. This study describes recent research related to the use of virtual reality applications in the rehabilitation of individuals with upper limb loss and to see whether this technology has enough proof of its applicability. EVIDENCE ACQUISITION: Searches were conducted with the Web of Science, Google Scholar, IEEE Xplore, and PubMed databases from inception up to September 2020. Articles that employed virtual reality in the rehabilitation of individual with upper limb loss were included in the research if it is written in English, the keyword exists in the title and abstract; it uses visual feedback in nonimmersive, semi-immersive, or fully immersive virtual environments. Data extraction was carried out by two independent researchers. The study was drafted using the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA). EVIDENCE SYNTHESIS: A total of 38 articles met the inclusion criteria. Most studies were published between 2010 and 2020. Thirty-nine percent of the studies (N.=15), originates from North America; 55% of the studies (N.=21), were publicly funded; 61% of the studies (N.=24), was without disclosure of conflict of interest; 82% of the studies (N.=31), were cited in other studies. All the studies were published in journals and conference proceedings. Sixty-six percent of the studies (N.=25) has come out with positive outcome. The design studies were mostly case reports, case series, and poorly designed cohort studies that made up 55% (N.=21) of all the studies cited here. CONCLUSIONS: The research conducted on the use of virtual reality in individual with upper limb loss rehabilitation is of very low quality. The improvements to the research protocol are much needed. It is not necessary to develop new devices, but rather to assess existing devices with well-conducted randomized controlled trials.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Realidad Virtual , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior
11.
Sports Biomech ; 21(9): 1065-1081, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32138608

RESUMEN

Service is assumed important in table tennis because an effective service may allow the serving player to control over the game; hence, the aim of this study was to determine the contribution of arm segment rotations towards ball impact during forehand service. Sixteen shake-hand grip collegiate table tennis athletes had participated in the study. It was revealed that by increasing the radial deviation angular velocity will increase the ball and racket velocities during drop shot service. Furthermore, it was revealed that increasing the wrist palmar flexion and radial deviation will enhance the racket velocity at impact during long shot service. However, it was recommended to the players not to concern on racket speed and arm segment rotations during contact phase as it could not accelerate the ball at impact during long shot service. Although it was the same forehand service, different length of flight ball lead to different contributions of arm segment rotations towards ball impact. The present findings highlight several better postures to increase racket and ball speed at impact during forehand long shot and drop shot services among advanced and intermediate players. Other ranked players may find this study useful as a fundamental understanding on kinematics serving arm.


Asunto(s)
Tenis , Brazo , Fenómenos Biomecánicos , Fuerza de la Mano , Humanos , Rango del Movimiento Articular
12.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6297-6305, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979293

RESUMEN

One of the major challenges in developing powered lower limb prostheses is emulating the behavior of an intact lower limb with different walking speeds over diverse terrains. Numerous studies have been conducted on control algorithms in the field of rehabilitation robotics to achieve this overarching goal. Recent studies on powered prostheses have frequently used a hierarchical control scheme consisting of three control levels. Most control structures have at least one element of discrete transition properties that requires numerous sensors to improve classification accuracy, consequently increasing computational load and costs. In this study, we proposed a user-independent and free-mode method for eliminating the need to switch among different controllers. We constructed a database by using four OPAL wearable devices (Mobility Lab, APDM Inc., USA) for seven able-bodied subjects. We recorded the gait of each subject at three ambulation speeds during ground-level walking to train a nonlinear autoregressive network with an exogenous input recurrent neural network (NARX RNN) to estimate foot orientation (angular position) in the sagittal plane using shank angular velocity as external input. The trained NARX RNN estimated the foot orientation of all the subjects at different walking speeds over flat terrain with an average root-mean-square error (RMSE) of 2.1° ± 1.7°. The minimum correlation between the estimated and measured values was 86%. Moreover, a t-test showed that the error was normally distributed with a high certainty level (0.88 minimum p -value).


Asunto(s)
Tobillo , Redes Neurales de la Computación , Humanos , Fenómenos Biomecánicos , Diseño de Prótesis , Caminata , Marcha
13.
Artículo en Inglés | MEDLINE | ID: mdl-34886410

RESUMEN

The popularity of modern tennis has contributed to the increasing number of participants at both recreational and competitive levels. The influx of numerous tennis participants has resulted in a wave of injury occurrences of different types and magnitudes across both male and female players. Since tennis injury harms both players' economic and career development, a better understanding of its epidemiology could potentially curtail its prevalence and occurrences. We used online-based tennis-related injury reports to study the prevalence, location types, and injury intensities in both male and female tennis players for the past five years. It is demonstrated from the chi-square analysis that injury occurrences are significantly associated with a specific gender (χ2(18) = 50.773; p = 0.001), with male players having a higher risk of injury manifestation (68.10%) as compared with female players (31.90%). Nonetheless, knee, hip, ankle, and shoulder injuries are highly prevalent in both male and female players. Moreover, the injury intensities are distributed across gender (χ2(2) = 0.398; p = 0.820), with major injuries being dominant, followed by minor injuries, whilst a few cases of career-threatening injuries were also reported. It was similarly observed that male players recorded a higher degree of both major, minor, and career-threatening injuries than female players. In addition, male players sustained more elbow, hip, knee, shoulder, and thigh injuries than female players. Whereas, female players mostly suffered from Achilles and back injuries, ankle and hamstring injuries affected both genders. The usage of online newspaper reports is pivotal in characterizing the epidemiology of tennis-related injuries based on locations and gender to better understand the pattern and localization of injuries, which could be used to address the problem of modern tennis-related injuries.


Asunto(s)
Traumatismos en Atletas , Traumatismos de la Espalda , Lesiones del Hombro , Tenis , Traumatismos en Atletas/epidemiología , Femenino , Humanos , Masculino , Lesiones de Codo
14.
Occup Ther Int ; 2021: 4357473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707468

RESUMEN

Muscle fatigue is a decline in muscle maximum force during contraction and can influence the fall risk among people. This study is aimed at identifying the effect of fatigue on prospective fall risk in transfemoral amputees (TFA). Fourteen subjects were involved in this study with TFA (34.7 ± 8.1 yrs, n = 7) and normal subjects (31.1 ± 7.4 yrs, n = 7). Fatigue of lower limb muscles was induced with the fatigue protocol. Subjects were tested prefatigue and postfatigue using the standardized fall risk assessment. All results were calculated and compared between pre- and postfatigue to identify fatigue's effect on both groups of subjects. The results showed that the fall risk increased significantly during pre- and postfatigue for TFA (p = 0.018), while there were no significant differences in normal subjects (p = 0.149). Meanwhile, the fall risk between TFA and normal subjects for prefatigue (p = 0.082) and postfatigue (p = 0.084) also showed no significant differences. The percentage (%) of increased fall risk for TFA was 19.2% compared to normal subjects only 16.7%. However, 61.4% increased of % fall risk in TFA after fatigue by using the baseline of the normal subject as the normalized % of fall risk. The increasing fall risks for TFA after fatigue are three times higher than the potential fall risk in normal subjects. The result indicates that they need to perform more precautions while prolonging lower limb activities. These results showed the implications of fatigue that can increase the fall risk due to muscle fatigue from repetitive and prolonged activities. Therefore, rehabilitation programs can be done very safely and precisely so that therapists can pursue fitness without aggravating existing injuries.


Asunto(s)
Amputados , Terapia Ocupacional , Fenómenos Biomecánicos , Humanos , Extremidad Inferior , Fatiga Muscular , Proyectos Piloto , Estudios Prospectivos
15.
PeerJ Comput Sci ; 7: e680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497873

RESUMEN

This study aims at classifying flat ground tricks, namely Ollie, Kickflip, Shove-it, Nollie and Frontside 180, through the identification of significant input image transformation on different transfer learning models with optimized Support Vector Machine (SVM) classifier. A total of six amateur skateboarders (20 ± 7 years of age with at least 5.0 years of experience) executed five tricks for each type of trick repeatedly on a customized ORY skateboard (IMU sensor fused) on a cemented ground. From the IMU data, a total of six raw signals extracted. A total of two input image type, namely raw data (RAW) and Continous Wavelet Transform (CWT), as well as six transfer learning models from three different families along with grid-searched optimized SVM, were investigated towards its efficacy in classifying the skateboarding tricks. It was shown from the study that RAW and CWT input images on MobileNet, MobileNetV2 and ResNet101 transfer learning models demonstrated the best test accuracy at 100% on the test dataset. Nonetheless, by evaluating the computational time amongst the best models, it was established that the CWT-MobileNet-Optimized SVM pipeline was found to be the best. It could be concluded that the proposed method is able to facilitate the judges as well as coaches in identifying skateboarding tricks execution.

16.
Proc Inst Mech Eng H ; 235(4): 419-427, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517847

RESUMEN

Electromyography signal has been used widely as input for prosthetic's leg movements. C-Leg, for example, is among the prosthetics devices that use electromyography as the main input. The main challenge facing the industrial party is the position of the electromyography sensor as it is fixed inside the socket. The study aims to investigate the best positional parameter of electromyography for transtibial prosthetic users for the device to be effective in multiple movement activities and compare with normal human muscle's activities. DELSYS Trigno wireless electromyography instrument was used in this study to achieve this aim. Ten non-amputee subjects and two transtibial amputees were involved in this study. The surface electromyography signals were recorded from two anterior and posterior below the knee muscles and above the knee muscles, respectively: tibial anterior and gastrocnemius lateral head as well as rectus femoris and biceps femoris during two activities (flexion and extension of knee joint and gait cycle for normal walking). The result during flexion and extension activities for gastrocnemius lateral head and biceps femoris muscles was found to be more useful for the control subjects, while the tibial anterior and also gastrocnemius lateral head are more active for amputee subjects. Also, during normal walking activity for biceps femoris and gastrocnemius lateral head, it was more useful for the control subjects, while for transtibial amputee subject-1, the rectus femoris was the highest signal of the average normal walking activity (0.0001 V) compared to biceps femoris (0.00007 V), as for transtibial amputee subject-2, the biceps femoris was the highest signals of the average normal walking activity (0.0001 V) compared to rectus femoris (0.00004 V). So, it is difficult to rely entirely on the static positioning of the electromyography sensor within the socket as there is a possibility of the sensor to contact with inactive muscle, which will be a gap in the control, leading to a decrease in the functional efficiency of the powered prostheses.


Asunto(s)
Marcha , Caminata , Fenómenos Biomecánicos , Electromiografía , Humanos , Articulación de la Rodilla , Músculo Esquelético
17.
JMIR Serious Games ; 9(1): e17017, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538698

RESUMEN

BACKGROUND: Brain plasticity is an important factor in prosthesis usage. This plasticity helps with brain adaptation to learn new movement and coordination patterns needed to control a prosthetic hand. It can be achieved through repetitive muscle training that is usually very exhausting and often results in considerable reduction in patient motivation. Previous studies have shown that a playful concept in rehabilitation can increase patient engagement and perseverance. OBJECTIVE: This study investigated whether the inclusion of video games in the upper limb amputee rehabilitation protocol could have a beneficial impact for muscle preparation, coordination, and patient motivation among individuals who have undergone transradial upper limb amputation. METHODS: Ten participants, including five amputee participants and five able-bodied participants, were enrolled in 10 1-hour sessions within a 4-week rehabilitation program. In order to investigate the effects of the rehabilitation protocol used in this study, virtual reality box and block tests and electromyography (EMG) assessments were performed. Maximum voluntary contraction was measured before, immediately after, and 2 days after interacting with four different EMG-controlled video games. Participant motivation was assessed with the Intrinsic Motivation Inventory (IMI) questionnaire and user evaluation survey. RESULTS: Survey analysis showed that muscle strength and coordination increased at the end of training for all the participants. The results of Pearson correlation analysis indicated that there was a significant positive association between the training period and the box and block test score (r8=0.95, P<.001). The maximum voluntary contraction increment was high before training (6.8%) and in the follow-up session (7.1%), but was very small (2.1%) shortly after the training was conducted. The IMI assessment showed high scores for the subscales of interest, perceived competence, choice, and usefulness, but low scores for pressure and tension. CONCLUSIONS: This study demonstrated that video games enhance motivation and adherence in an upper limb amputee rehabilitation program. The use of video games could be seen as a complementary approach for physical training in upper limb amputee rehabilitation.

18.
Proc Inst Mech Eng H ; 234(7): 749-757, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32459132

RESUMEN

The conservative techniques of treating knee osteoarthritis (kOA) include wearing orthoses such as knee braces and laterally wedged insoles and applying gait modification techniques such as toe-in gait and toe-out gait. This study aimed at assessing the immediate effects of these techniques in improving physical function of healthy and kOA participants. Five Osteoarthritis Research Society International (OARSI) recommended performance-based tests were randomly applied to measure physical function: (1) 30-second chair stand test (30CST), (2) 40-m (4 × 10) fast-paced walk test (40FPW), (3) stair climb test (SCT), (4) timed up and go test (TUGT) and (5) 6-minute walk test (6MWT) during a single-visit on 20 healthy and 20 kOA patients (age: 59.5 ± 7.33 and 61.5 ± 8.63 years, BMI: 69.95 ± 9.86 and 70.45 ± 8.80 kg/m2). The interventions included natural gait, toe-out gait, toe-in gait, laterally wedged insoles and knee brace. Analysis was performed through repeated-measures ANOVA and independent sample t-test. 30CST and TUGT showed no significant differences for the five test conditions (p > 0.05). Toe-out showed profound effects via pairwise comparison in impairing the physical function while knee brace improved it during 40FPW, SCT and 6MWT. In general, all the tested conservative techniques except laterally wedged insoles had immediate effects on physical performance measures in both healthy and medial knee osteoarthritis participants. The valgus knee brace improved the parameters the most, while toe-out gait impaired them the most. Future studies can develop strategies for improving gait retraining methods on the basis of issues identified by this study.


Asunto(s)
Marcha/fisiología , Aparatos Ortopédicos , Osteoartritis de la Rodilla/rehabilitación , Rendimiento Físico Funcional , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Equilibrio Postural , Autoinforme
19.
Proc Inst Mech Eng H ; 234(8): 884-894, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32459140

RESUMEN

Many studies have shown that medical compression products produce different levels of interface pressure during the usage of the products. However, limited studies have explored the pattern of interface pressure exerted by orthotic garments. This case study aimed to investigate the pattern of interface pressure exerted by two types of orthotic garments on a child with cerebral palsy. A 13-year-old child diagnosed with ataxic spastic diplegia cerebral palsy has difficulty to perform sit-to-stand motion even with a walking frame due to his truncal ataxia. A TheraTogsTM orthosis and a Dynamic Lycra® Fabric Orthosis (DLFO) were prepared for the child. The child's sit-to-stand ability without and with the usage of orthoses was recorded using five sit-to-stand tests. The garments' interface pressure was measured using F-scan (9811E) and F-scan 6.5.1 version software. The pressure was recorded when the child was in sitting position and performing sit-to-stand-to-sit motion. Overall, the child completed the five sit-to-stand test duration within 2.53 ± 0.04 s and 2.51 ± 0.09 s with the usage of TheraTogsTM orthosis and DLFO, respectively. Higher pressure was exerted by Dynamic Lycra Fabric Orthosis (axillary = 122 mmHg) in contrast to TheraTogsTM orthosis (77 mmHg) when the child was in a sitting position. Lower pressure was exerted by DLFO (7 mmHg), over xiphoid level and for TheraTogsTM orthosis is 1.2 mmHg over axillary level when the child was performing sit-to-stand motion. The largest range of pressure was exerted by TheraTogsTM orthosis with a minimum pressure of 5 mmHg and a maximum pressure of 155 mmHg during sit-to-stand motion. Overall, the DLFO exerted higher mean interface pressure on the child in comparison to TheraTogsTM orthosis when the child's body was in a sitting position wearing both upper garment and pants. Both TheraTogsTM orthosis and DLFO presented a different range of interface pressure over different body segments and activities.


Asunto(s)
Tirantes , Parálisis Cerebral , Vestuario , Presión , Adolescente , Humanos , Lactante , Masculino
20.
ACS Biomater Sci Eng ; 6(5): 2985-2994, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33463293

RESUMEN

Hypoxia, the result of disrupted vasculature, can be categorized in the main limiting factors for fracture healing. A lack of oxygen can cause cell apoptosis, tissue necrosis, and late tissue healing. Remedying hypoxia by supplying additional oxygen will majorly accelerate bone healing. In this study, biphasic calcium phosphate (BCP) scaffolds were fabricated by robocasting, an additive manufacturing technique. Then, calcium peroxide (CPO) particles, as an oxygen-releasing agent, were coated on the BCP scaffolds. Segmental radial defects with the size of 15 mm were created in rabbits. Uncoated and CPO-coated BCP scaffolds were implanted in the defects. The empty (control) group received no implantation. Repairing of the bone was investigated via X-ray, histological analysis, and biomechanical tests at 3 and 6 months postoperatively, with immunohistochemical examinations at 6 months after operation. According to the radiological observations, formation of new bone was augmented at the interface between the implant and host bone and internal pores of CPO-coated BCP scaffolds compared to uncoated scaffolds. Histomorphometry analysis represented that the amount of newly formed bone in the CPO-coated scaffold was nearly two times higher than the uncoated one. Immunofluorescence staining revealed that osteogenic markers, osteonectin and octeocalcin, were overexpressed in the defects treated with the coated scaffolds at 6 months of postsurgery, demonstrating higher osteogenic differentiation and bone mineralization compared to the uncoated scaffold group. Furthermore, the coated scaffolds had superior biomechanical properties as in the case of 3 months after surgery, the maximal flexural force of the coated scaffolds reached to 134 N, while it was 92 N for uncoated scaffolds. The results could assure a boosted ability of bone repair for CPO-coated BCP scaffolds implanted in the segmental defect of rabbit radius because of oxygen-releasing coating, and this system of oxygen-generating coating/scaffold might be a potential for accelerated repairing of bone defects.


Asunto(s)
Osteogénesis , Andamios del Tejido , Animales , Regeneración Ósea , Huesos , Oxígeno , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...