Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Rep ; 20(4): 58, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38414625

RESUMEN

Chemoresistance is the major cause of cancer recurrence, relapse and eventual death. Doxorubicin resistance is one such challenge in breast cancer. The use of quercetin, an antioxidant, in combination with doxorubicin has been investigated for offering protection to normal cells from the toxic side effects of doxorubicin in addition to modulation of its resistance. The present study aimed to investigate the effects of quercetin in prevention of a doxorubicin-chemoresistant phenotype in both doxorubicin-sensitive and -resistant human MCF-7 breast cancer cell lines. A doxorubicin-resistant MCF-7 cell line was established. The development of resistant cells was closely monitored for changes in morphological features. Sensitivity to doxorubicin and the doxorubicin/quercetin combination was assessed using the tetrazolium assay. To determine the mechanism by which quercetin sensitizes the doxorubicin MCF-7-resistant cell line to doxorubicin, gene expression alterations in breast cancer-related genes were examined using the reverse transcription-quantitative PCR (RT-qPCR) array technology. Resistant MCF cells were successfully developed and the inhibitory concentration (IC50) value of doxorubicin increased from 0.133 to 4 µM (wild-type to resistant). The effects of the quercetin/doxorubicin combination exhibited different effects on wild-type vs. resistant cells. The IC50 of doxorubicin was reduced in wild cells, whereas resistant cells showed an increase in cell viability at lower concentrations and a potentiation of the effects of doxorubicin only at higher concentrations. Annexin V/propidium iodide staining demonstrated that quercetin drives cells into late apoptosis and necrosis, but in resistant cells, necrosis predominates. RT-qPCR results revealed that quercetin led to a reversal in doxorubicin effects via up- and downregulation of important genes such as SNAI2, PLAU and CSF1 genes. Downregulation of cell migration genes, SNAI2 (-31.23-fold) and plasminogen activator, urokinase (PLAU; -30.62-fold), and the apoptotic pathway gene, colony stimulating factor 1 (CSF1; -17.25-fold) were the most important querticin-associated events. Other gene alterations were also observed involving cell cycle arrest and DNA repair pathways. The results of the present study indicated that quercetin could lead to a reversal of doxorubicin resistance in breast cancer cells via downregulation of the expression of important genes, such as SNAI2, PLAU and CSF1. Such findings may represent a potential strategy for reversing breast cancer cell-related chemoresistance.

2.
Photodiagnosis Photodyn Ther ; 44: 103841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832710

RESUMEN

Wounds infected by Pseudomonas aeruginosa (P. aeruginosa) biofilms are characterized by poor healing and by being long lasting. Pyocyanin and pyoverdine are exotoxins that contribute to P. aeruginosa pathogenicity in wound infections and are known as virulence factors. Despite the usefulness of antimicrobial photodynamic therapy (PDT) in the management of wound infections, biofilms are hurdle for microbial photoinactivation. Quorum sensing (QS) is a cell density-dependent chemical signaling system P. aeruginosa uses to regulate biofilm formation and virulence factors production. In the current study, QS attenuation was used in combination with PDT against P. aeruginosa biofilm cultured on skin explant. Iberin is a QS inhibitor that attenuates P. aeruginosa virulence and affects biofilm integrity. The antibiofilm and QS inhibitory activities of iberin in combination with either riboflavin or 5,10,15,20-Tetrakis(1-methyl-4-pyridinio) porphyrin tetra p-toluenesulfonate (TMP) mediated PDT were investigated using viable count method and pyocyanin and pyoverdine assays, respectively. No bactericidal activity was reported when iberin was added to a mature biofilm (24 h) followed by PDT. When added to a growing biofilm at multiple time points (0 h, 24 h and 48 h), iberin inhibited P. aeruginosa biofilm QS signaling system. This inhibitory effect resulted in an observable decrease in the levels of the QS-regulated virulence factors, pyocyanin and pyoverdine, without any effect on the growth of the biofilm cultures. These changes in biofilm virulence were associated with a decrease in biofilm resistance to PDT and caused bactericidal effect upon photosensitizers treatment and irradiation. Iberin-treated-riboflavin-mediated PDT resulted in a significant 1.3 log reduction in biofilm population. Similarly, iberin-treated-TMP-mediated PDT caused a significant 1.8 log reduction in biofilm population. The combination of QS inhibitor with PDT is a promising alternative antimicrobial therapy for the management of biofilms.


Asunto(s)
Fotoquimioterapia , Infección de Heridas , Humanos , Pseudomonas aeruginosa , Piocianina , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Biopelículas , Percepción de Quorum , Antibacterianos/farmacología , Factores de Virulencia , Riboflavina/farmacología
3.
Eur J Pharm Sci ; 182: 106378, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638899

RESUMEN

Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células HCT116 , Metabolómica , Proliferación Celular
4.
Sci Rep ; 12(1): 21599, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517571

RESUMEN

Prostate cancer (PC) is the second most common tumor in males worldwide. The lack of effective medication and the development of multidrug resistance towards current chemotherapeutic agents urge the need to discover novel compounds and therapeutic targets for PC. Herein, seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated for their anticancer activity against PC3 and DU145 cancer cell lines using MTT, scratch-wound healing, adhesion and invasion assays. Besides, a liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was followed to identify the biochemical pathways altered in DU145 cancer cells upon exposure to dihydroquinazolin derivatives. The seven compounds showed sufficient cytotoxicity and significantly suppressed DU145 and PC3 migration after 48 and 72 h. C2 and C5 had the most potent effect with IC50 < 15 µM and significantly inhibited PC cell adhesion and invasion. Metabolomics revealed that C5 disturbed the level of metabolites involved in essential processes for cancer cell proliferation, progression and growth including energy production, redox homeostasis, amino acids and polyamine metabolisms and choline phospholipid metabolism. The data presented herein highlighted the importance of these compounds as potential anticancer agents particularly C5, and pointed to the promising role of metabolomics as a new analytical approach to investigate the antiproliferative activity of synthesized compounds and identify new therapeutic targets.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Proliferación Celular , Antineoplásicos/uso terapéutico
5.
J Immunol Res ; 2022: 6031776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284577

RESUMEN

Introduction: This study is aimed at investigating the immunological response after treating THP-1 cells with gold nanorods conjugated with a phosphatidylinositol 3-kinase (PI3Kα) inhibitor. Methodology. Gold nanorods were synthesized and functionalized with cholesterol-PEG-SH moiety, and the treatment groups were as follows: nanocomplex (a drug-conjugated gold nanorods), free drug (phosphatidylinositol 3-kinase (PI3Kα) inhibitor), and GNR (the nanocarrier; cholesterol-coated gold nanorods). THP-1 cells were differentiated into macrophages and characterized by measuring the expression of macrophage surface markers by flow cytometry. Then, differentiated cells were activated by lipopolysaccharide (LPS). Afterwards, activated macrophages were treated with the different treatments: nanocomplex, free drug, and GNR, for 24 hrs. After treatment, the production of the inflammatory cytokines measured at gene and protein levels by using qPCR and CBA array beads by flow cytometry. Results: Our results show that THP-1 cells were successfully differentiated into macrophages. For inflammatory cytokine expression response, nanocomplex and free drug showed the same expression level of cytokines at gene level, as the expression of IL-1ß, IL-6, and TNF-α was significantly downregulated (p < 0.0005, p < 0.0005, p < 0.00005), respectively, while IL-8, IL-10, and TGF-ß were all upregulated in a significant manner for nanocomplex (p < 0.00005, p < 0.00005, p < 0.00005) and free drug treatment group (p < 0.00005, p < 0.05, p < 0.05) compared to the control untreated group. While in the GNR group, IL-6 and TNF-α were downregulated (p < 0.005, p < 0.00005), and IL-12p40 (p < 0.00005) was upregulated all in a statistically significant manner. While at protein level, cells were treated with our nanocomplex: IL-1ß, IL-6, TNF-α, and IL-12p70 and were significantly decreased (p < 0.00005,p < 0.005,p < 0.05,p < 0.00005), and IL-10 was found to be significantly increased in culture compared to the untreated control group (p < 0.005). For free drug; IL-1ß and IL-12p70 were significantly decreased (p < 0.00005, p < 0.00005), while a significant increase in the secretion levels of IL-10 only was noticed compared to the untreated group (p < 0.005). For GNR treatment groups, IL-1ß, TNF-α, and IL-12p70 were significantly decreased (p < 0.00005, p < 0.05, p < 0.00005). Conclusion: We can conclude that our nanocomplex is a potent effector that prevents tumoral progression by activating three main immunological strategies: switching the surface expression profile of the activated macrophages into a proinflammatory M1-like phenotype, downregulating the expression of proinflammatory cytokines, and upregulating the expression level of anti-inflammatory cytokines.


Asunto(s)
Oro , Macrófagos , Citocinas/metabolismo , Oro/metabolismo , Oro/farmacología , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Células THP-1
6.
7.
ACS Omega ; 6(24): 15903-15910, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34179634

RESUMEN

Herein, the antiproliferative effect of surface-decorated gold nanorods (GNRs) was investigated against three different breast cancer cell lines. The results indicate that the cell lines exhibited different biological responses and death modalities toward the treatment. The cell lines exhibited similar cellular uptake of the nanoparticles; however, MDA-MB-231 demonstrated the highest cytotoxicity compared to other cell lines upon treatment with GNRs. The expression of the CDH1 gene, which is involved in cell adhesion and metastasis, was dramatically increased in treated MDA-MB-231 cells compared to other cell lines. Early apoptosis and late apoptosis are the dominant cellular death modalities of MDA-MB-231 cells upon treatment with GNRs.

8.
Biomolecules ; 11(3)2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673519

RESUMEN

Phospholipid-modified gold nanorods (phospholipid-GNRs) have demonstrated drastic cytotoxicity towards MCF-7 breast cancer cells compared to polyethylene glycol-coated GNRs (PEG-GNRs). In this study, the mechanism of cytotoxicity of phospholipid-GNRs towards MCF-7 cells was investigated using mass spectrometry-based global metabolic profiling and compared to PEGylated counterparts. The results showed that when compared to PEG-GNRs, phospholipid-GNRs induced significant and more pronounced impact on the metabolic profile of MCF-7 cells. Phospholipid-GNRs significantly decreased the levels of metabolic intermediates and end-products associated with cellular energy metabolisms resulting in dysfunction in TCA cycle, a reduction in glycolytic activity, and imbalance of the redox state. Additionally, phospholipid-GNRs disrupted several metabolism pathways essential for the normal growth and proliferation of cancer cells including impairment in purine, pyrimidine, and glutathione metabolisms accompanied by lower amino acid pools. On the other hand, the effects of PEG-GNRs were limited to alteration of glycolysis and pyrimidine metabolism. The current work shed light on the importance of metabolomics as a valuable analytical approach to explore the molecular effects of GNRs with different surface chemistry on cancer cell and highlights metabolic targets that might serve as promising treatment strategy in cancer.


Asunto(s)
Metabolismo Energético , Oro/química , Metabolómica , Nanotubos/química , Fosfolípidos/química , Muerte Celular , Cromatografía Liquida , Análisis por Conglomerados , Humanos , Células MCF-7 , Espectrometría de Masas , Redes y Vías Metabólicas , Metaboloma , Análisis Multivariante , Polietilenglicoles/química
9.
Molecules ; 26(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670890

RESUMEN

Prostate cancer is one of the most common cancers in men. Cell invasion is an important step in the process of cancer metastasis. Herein, gold nanorods (GNRs) and polyethylene glycol (PEG)-coated GNRs were conjugated with polydopamine (PDA). The PDA-nanoconjugates demonstrated excellent colloidal stability upon lyophilization and dispersion in cell culture media with or without the addition of fetal bovine albumin (FBS), compared to unconjugated GNRs. PDA-nanoconjugates exhibited a considerable cytotoxicity against DU-145 and PC3 prostate cancer cell lines over a concentration range of 48 µg/mL-12 µg/mL, while they were biocompatible over a concentration range of 3.0 µg/mL-0.185 µg/mL. Furthermore, PDA-nanoconjugates demonstrated possible anti-invasion activity towards prostate cancer cell lines, particularly DU-145 cell line, by reducing cell migration and cell adhesion properties. The PDA-nanoconjugates could be considered a promising nano-platform toward cancer treatment by reducing the invasion activity; it could also be considered a drug delivery system for chemotherapeutic agents.


Asunto(s)
Antineoplásicos/química , Oro/química , Indoles/química , Nanoconjugados/química , Nanotubos/química , Polímeros/química , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Polietilenglicoles/química , Propiedades de Superficie
10.
RSC Adv ; 11(33): 19956-19966, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35479887

RESUMEN

Herein, a polymeric nanofiber scaffold loaded with Quercetin (Quer)-gold nanorods (GNR) was developed and characterized. Several parameters related to loading Quer into GNR, incorporating the GNR-Quer into polymeric solutions, and fabricating the nanofibers by electrospinning were optimized. GNR-Quer loaded into a polymeric mixture of poly(lactic-co-glycolic acid) (PLGA) (21%) and poloxamer 407 (23%) has produced intact GNR-Quer-nanofibers with enhanced physical and mechanical properties. GNR-Quer-nanofibers demonstrated a slow pattern of Quer release over time compared to nanofibers free of GNR-Quer. Dynamic mechanical thermal analysis (DMTA) revealed enhanced uniformity and homogeneity of the GNR-Quer-nanofibers. GNR-Quer-nanofibers demonstrated a high ability to retain water upon incubation in phosphate buffer saline (PBS) for 24 h compared to nanofibers free of GNR-Quer. A cellular toxicity study indicated that the average cellular viability of human dermal fibroblasts was 76% after 24 h of exposure to the nanofibers containing a low concentration of GNR-Quer.

11.
Biophys Chem ; 266: 106460, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890944

RESUMEN

Cinacalcet (CT) is an important drug for the treatment hyperparathyroidism. Only few studies havereported thepotential interaction between CT and other potentially coadministered drugs. In this study, the potential of invitro interaction between CT and DF sodium (DF-Na) was investigated. An ion pair salt of CT with DF was obtained by mixing the two compounds in solution; the product was fully characterized by HPLC analysis, UV, FTIR, NMR spectroscopy in addition to DSC. The solubility and partition coefficients were found to significantly decrease and increase, respectively, for the obtained ion pair salt in comparison to the parent compounds. Dissolution studies in phosphate buffer pH 6.8 revealed a significant decrease in the dissolution of an already poorly water soluble drug (decrease to ~20% of the original). Permeation studies, through Caco-2 cells monolayer, revealed a significant decrease in permeation of CT when coexisted with DF (almost to half). Apparent permeability coefficient (Papp) decreased from 3.6 × 10-6 to 1.8 × 10-6 cm/s. Interestingly, a structure for the formed CT-DF salt that could explain the above findings (increase in lipophilicity), could be proposed based on structural modelling, molecular dynamic simulations and NMR proton chemical shifts analysis.


Asunto(s)
Cinacalcet/química , Diclofenaco/química , Modelos Moleculares , Estructura Molecular
12.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397063

RESUMEN

Conjugating drugs with gold nanoparticles (GNP) is a key strategy in cancer therapy. Herein, the potential inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and other pathways of the MCF-7 cell-line, was investigated upon treatment with gold nanorods (GNR) conjugated with a PI3K inhibitor drug. The results revealed that the coupling of GNR with the drug drastically modulated the expression of PI3Kα at the gene and protein levels compared to the drug or GNR alone. The PI3Kα pathway is involved in tumor progression and development through the mediation of different mechanisms such as apoptosis, proliferation, and DNA damage. Treatment with the nanocomplex significantly affected the gene expression of several transcription factors responsible for cell growth and proliferation, apoptotic pathways, and cell cycle arrest. Furthermore, the gene expression of different regulatory proteins involved in cancer progression and immune responses were significantly modified upon treatment with the nanocomplex compared to the free drug or GNR alone.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Oro/uso terapéutico , Nanopartículas del Metal/química , Nanotubos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/farmacología , Neoplasias de la Mama/patología , Femenino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Oro/química , Humanos , Proteínas I-kappa B/metabolismo , Células MCF-7 , Nanopartículas del Metal/uso terapéutico , FN-kappa B/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
13.
Nanomaterials (Basel) ; 9(8)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390794

RESUMEN

Herein, the cytotoxicity, cellular uptake and wound healing of human dermal fibroblasts were investigated upon treatment with gold nanorods (GNR) decorated with different ligands. Neutral and cationic poly ethylene glycol (PEG)-decorated GNR demonstrated the least cytotoxicity and cellular internalization, while anionic- and bovine serum albumin (BSA)-coated GNR revealed significant cytotoxicity and cellular uptake into human dermal fibroblasts. The cell scratch test demonstrated that neutral, cationic PEGylated GNR and anionic-decorated GNR have accelerated the wound healing rate in vitro after 24 h of incubation with scratched human dermal fibroblasts compared to control, while there was a drastic retardation of wound healing rate of scratched fibroblasts upon exposure to BSA-GNR accompanied with a significant release of the inflammatory cytokine; interlukin-1ß (IL-1ß). The cytotoxicity of GNR against the dermal cells and their ability to enhance the wound healing in vitro are greatly linked to their surface modifications.

14.
Mol Pharm ; 16(10): 4149-4164, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31398052

RESUMEN

Gold nanorods (GNRs) have gained pronounced recognition in the diagnosis and treatment of cancers driven by their distinctive properties. Herein, a gold-based nanosystem was prepared by utilizing a phospholipid moiety linked to thiolated polyethylene glycol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG-SH, as a surface decorating agent. The synthesized phospholipid-PEG-GNRs displayed good colloidal stability upon exposure to the tissue culture medium. Cytotoxicity of phospholipid-PEG-GNRs was investigated toward MCF-7 and T47D breast cancer cells using sulforhodamine B test. The results revealed that phospholipid-PEG-GNRs demonstrated  high cytotoxicity to MCF-7 cells compared to T47D cells, and minimal cytotoxicity to human dermal fibroblasts. The cellular uptake studies performed by imaging and quantitative analysis demonstrated  massive internalization of phospholipid-coated GNRs into  MCF-7 cells in comparison to T47D cells. The cellular death modality of cancer cells after treatment with phospholipid-PEG-GNRs was evaluated using mitochondrial membrane potential assay (JC-1 dye), gene expression analysis, and flow cytometry study. The overall results suggest that phospholipid-modified GNRs enhanced mainly the cellular apoptotic events in MCF-7 cells in addition to necrosis, whereas cellular necrosis and suppression of cellular invasion contributed to the cellular death modality in the T47D cell line upon treatment with phospholipid-PEG-GNRs. The phospholipid-coated GNRs interact in a different manner with breast cancer cell lines and could be considered for breast cancer treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Oro/química , Nanotubos/toxicidad , Fosfolípidos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanotubos/química , Polietilenglicoles/química , Células Tumorales Cultivadas
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 221: 117194, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31170609

RESUMEN

This study aims at investigating the potential effect of selected cationic drugs (azithromycin (AZN) and pseudoephedrine sulfate (PSD) on the dissolution profile and intestinal permeation of losartan potassium (LOS) that might occur due to ion pair salt formation. DSC, FT-IR and 1H NMR indicated the formation of ion pair salts between LOS and each of AZN and PSD. Based on NMR chemical shifts calculations, utilizing specialized software, the most likely structures of the salt were proposed and revealed interesting structural features. The obtained ion pair products were shown to have lower aqueous solubilities (water and phosphate buffer pH 6.8) and higher apparent partition coefficient values compared to the parent compound. Neither of the cations affected the dissolution of LOS tablet (Cozaar® 100 mg) in the studied media (HCl pH 1.2 and phosphate buffer pH 6.8). Interestingly, AZN significantly increased the dissolution of LOS in phosphate buffer pH 4.5 (f2 = 33), and an explanation based on distinguished association pattern between AZN and LOS (CH/π) was offered. Employing permeation test across Caco-2 cells monolayer, the apparent permeability coefficient (Papp) of LOS increased significantly (from 0.9 × 10-5 cm/s to 1.8 × 10-5 cm/s) in the presence of the selected cations. Therefore, while the employed cationic drugs were not shown to form ion pair salts under the in-vitro dissolution conditions, they may still participate in significant in-vivo interaction with LOS.


Asunto(s)
Azitromicina/química , Losartán/química , Seudoefedrina/química , Azitromicina/farmacocinética , Células CACO-2 , Rastreo Diferencial de Calorimetría , Cationes , Interacciones Farmacológicas , Humanos , Concentración de Iones de Hidrógeno , Losartán/farmacocinética , Espectroscopía de Resonancia Magnética , Permeabilidad , Seudoefedrina/farmacocinética , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos/química
16.
AAPS PharmSciTech ; 20(2): 54, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30617756

RESUMEN

Norethindrone has short half-life and low bioavailability. The objective was to prepare an oral Sustained Release/Controlled Release (SR/CR) Liquid Medicated Formulation (LMF) to enhance bioavailability and improve patient compliance. Norethindrone was solubilized in HP-ß-CD then complexed with different concentrations of Low Molecular Weight Chitosan (LMWC) (mucoadhesive). PolyElectrolyte Complexes (PECs) were homogenized with oleic acid using different concentrations of tween 80 to form LMFs (nanoemulsions). PECs and LMFs were characterized using different techniques. LMF 2 (optimum formula containing 2.5% w/v LMWC 11 kDa) was administered orally to dogs and mice for pharmacokinetic and adhesion evaluation. DSC, FTIR spectroscopy and SEM images indicated complex formation. Mean diameters of PECs were 183-425 nm, mean zeta potentials were + 18.6-+ 31 mV, and complexation efficiencies were 18.0-20.6%. Ten to fifteen percent tween was needed to prepare homogenous LMFs. Mean diameter of LMF 2 was 10.5 ± 0.57 nm, mean zeta potential was - 11.07 ± - 0.49 mV, encapsulation efficiency was 95.28 ± 1.75%, and each mL contained 145.5 µg norethindrone. SEM images showed spherical homogeneous oil droplets. All of these parameters were affected by molecular weight and concentration of chitosan. Norethindrone release from LMFs was controlled (zero order) for 96 h. It was little affected by molecular weight and concentration of chitosan but affected by concentration of tween 80. LMF 2 adhered to GIT for 48 h and enhanced the bioavailability. It showed no cytotoxicity after considering dilution in GIT and was stable for 3 months refrigerated. In conclusion an effective SR/CR LMF was prepared.


Asunto(s)
Quitosano/química , Anticonceptivos Sintéticos Orales/química , Nanopartículas/química , Noretindrona/química , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Rastreo Diferencial de Calorimetría/métodos , Quitosano/administración & dosificación , Quitosano/farmacocinética , Anticonceptivos Sintéticos Orales/administración & dosificación , Anticonceptivos Sintéticos Orales/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Perros , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Noretindrona/administración & dosificación , Noretindrona/farmacocinética , Distribución Aleatoria
17.
RSC Adv ; 9(22): 12718-12731, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35515852

RESUMEN

Gold nanorods (GNRs) have a recognized role in treatment of cancers as efficient nanocarriers for chemotherapeutic drug delivery. In this study, GNRs modified with cholesterol-PEG were employed as a nanocarrier for a hydrophobic compound having a promising phosphatidylinositol 3-kinase (PI3Kα) inhibitory activity. The acquired nanocomplex was characterized by optical and infra-red (IR) absorption spectroscopies, in addition to hydrodynamic size and zeta potential. Glide docking and superposing of docked poses of the hydrophobic ligand and cholesterol moiety demonstrated that hydrophobic interactions drive the conjugation and attachment of the ligand to the cholesterol moiety of the nanocarrier. In vitro release study under a cellular environment indicates that the presence of cells has enhanced the release and the cellular uptake of the conjugated ligand. Furthermore, the anti-proliferative assay of the nanocomplex revealed potent cytotoxicity over a low concentration range of the nanocomplex against MCF-7 breast cancer cells compared to the free compound or the nanocarrier alone. Analysis of cellular death modality by flow cytometry showed that the nanocomplex has a rapid effect on cell death, as cells went toward the late apoptotic/necrotic stage rapidly and proportionally to the increase of the nanocomplex concentration. The overall results propose that cholesterol-decorated GNRs could be considered as a promising nanocarrier for hydrophobic drugs to achieve efficient delivery and potential therapy against breast cancer cells.

18.
Drug Dev Ind Pharm ; 45(2): 292-303, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30348012

RESUMEN

OBJECTIVE: To study the potential influence of selected metal ions on absorption (and hence oral bioavailability of ciprofloxacin (Cipro) in presence and absence of a competing ligand. SIGNIFICANCE: The presence of metal ions together with Cipro results in complexes exhibiting a decreased bioavailability. Attempts were made to better understand the mechanism of decreased Cipro bioavailability in the presence of metals such as calcium and ferrous ions, and a small-sized ligand citric acid (CitA). METHODS: Effect of complex size or other potential factors was studied using diffusion through synthetic membrane, permeation studies across Caco-2 cells and capillary electrophoresis. A molecular dynamics (MD) simulation study was conducted to find the arrangement and the nature of the interactions between Cipro molecules and ferrous ions. RESULTS: Cipro was shown to form complexes with metals and CitA. The presence of CitA improved permeation of Cipro through the synthetic membrane but this was not as obvious in case of Caco-2 cells. Capillary electrophoresis suggested the existence of large molecular aggregates of Cipro: metal complexes. MD simulations offered clear evidence of large size aggregates in line with the experimental findings. CitA alone significantly improved permeation of Cipro through Caco-2 cells. CONCLUSIONS: The size of the formed complexes, rather than the decrease in the solubility of formed complexes, plays a significant role in permeation (absorption) of Cipro. CitA might ameliorate the effect of co-administered metal ions on the bioavailability of Cipro.


Asunto(s)
Antiinfecciosos/farmacocinética , Calcio/farmacología , Ciprofloxacina/farmacocinética , Ácido Cítrico/farmacología , Compuestos Ferrosos/farmacología , Absorción Intestinal/efectos de los fármacos , Antiinfecciosos/administración & dosificación , Disponibilidad Biológica , Células CACO-2 , Permeabilidad de la Membrana Celular , Ciprofloxacina/administración & dosificación , Difusión , Electroforesis Capilar , Humanos , Iones , Solubilidad , Espectrofotometría Ultravioleta
19.
BMC Complement Altern Med ; 18(1): 64, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29452588

RESUMEN

CORRECTION: After the publication [1] it came to the attention of the authors that one of the co-authors was incorrectly included as Hamza Somrain. The correct spelling is as follows: Hamzeh Sumrein.

20.
Pharm Dev Technol ; 20(3): 361-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24392877

RESUMEN

This study investigated the preparation and characterization of glyceryl monooleate- (GMO) based drug delivery system containing ofloxacin for the treatment of otitis externa. Acetate buffer (pH 4.5) containing dissolved ofloxacin was added to molten GMO as an aqueous phase, this resulted in the formation of a cubic and a reverse hexagonal phases. The release behavior of ofloxacin from the drug delivery system was studied using three different methods. The mechanism of drug release using paddles/dissolution apparatus and Franz diffusion cells followed Higuchi and Fickian diffusion models; whereas intrinsic release rate method showed zero-order kinetics. The intrinsic release rate was estimated and found to be 187.2 µg/cm(2)/h. The release mechanisms were similar irrespective of the loaded ofloxacin amount, however, the higher drug load displayed higher release rate. The drug delivery system was proven to be microbiologically effective by using agar diffusion method, against Staphylococcus aureus, and Pseudomonas aeruginosa. The GMO/ofloxacin formulation was stable for 6 months after preparation at room temperature as measured with respect to phase stability and antibacterial activity.


Asunto(s)
Antibacterianos/administración & dosificación , Sistemas de Liberación de Medicamentos , Glicéridos/química , Ofloxacino/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Química Farmacéutica/métodos , Difusión , Portadores de Fármacos/química , Liberación de Fármacos , Ofloxacino/química , Ofloxacino/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Solubilidad , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...