Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Reprod ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670547

RESUMEN

STUDY QUESTION: Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER: Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY: While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION: A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION: The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS: We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S): J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37259347

RESUMEN

Mammalian oocyte activation is initiated by intracellular calcium (Ca2+) oscillations, driven by the testis-specific phospholipase C zeta (PLCζ). Sperm PLCζ analysis represents a diagnostic measure of sperm fertilisation capacity. The application of antigen unmasking/retrieval (AUM) generally enhanced the visualisation efficacy of PLCζ in mammalian sperm, but differentially affected the PLCζ profiles in sperm from different human males. It is unclear whether AUM affects the diagnosis of PLCζ in human sperm. Herein, we examined whether the application of AUM affected the correlation of PLCζ profiles with sperm parameters and fertilisation capacity. PLCζ fluorescence levels and localisation patterns were examined within the sperm of males undergoing fertility treatment (55 patients aged 29-53) using immunofluorescence in the absence/presence of AUM. The changes in PLCζ profiles following AUM were examined in relation to sperm health and fertilisation outcome. AUM enhanced the observable levels and specific localisation patterns of PLCζ in relation to both optimal sperm parameters and fertilisation outcome, without which significant differences were not observed. The extent of the change in levels and localisation ratios of PLCζ was also affected to a larger degree in terms of the optimal parameters of sperm fertility and fertilisation capacity by AUM. Collectively, AUM was essential to accurately assesses PLCζ in human sperm in both scientific and clinical contexts.

3.
Sci Rep ; 12(1): 21456, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509865

RESUMEN

During mammalian spermatogenesis, the ubiquitin proteasome system maintains protein homoeostasis (proteastasis) and spermatogenic cellular functions. DCAF17 is a substrate receptor in the ubiquitin CRL4 E3 Ligase complex, absence of which causes oligoasthenoteratozoospermia in mice resulting in male infertility. To determine the molecular phenomenon underlying the infertility phenotype caused by disrupting Dcaf17, we performed RNA-sequencing-based gene expression profiling of 3-weeks and 8-weeks old Dcaf17 wild type and Dcaf17 disrupted mutant mice testes. At three weeks, 44% and 56% differentially expressed genes (DEGs) were up- and down-regulated, respectively, with 32% and 68% DEGs were up- and down-regulated, respectively at 8 weeks. DEGs include protein coding genes and lncRNAs distributed across all autosomes and the X chromosome. Gene ontology analysis revealed major biological processes including proteolysis, regulation of transcription and chromatin remodelling are affected due to Dcaf17 disruption. We found that Dcaf17 disruption up-regulated several somatic genes, while germline-associated genes were down-regulated. Up to 10% of upregulated, and 12% of downregulated, genes were implicated in male reproductive phenotypes. Moreover, a large proportion of the up-regulated genes were highly expressed in spermatogonia and spermatocytes, while the majority of downregulated genes were predominantly expressed in round spermatids. Collectively, these data show that the Dcaf17 disruption affects directly or indirectly testicular proteastasis and transcriptional signature in mouse.


Asunto(s)
Espermatogénesis , Testículo , Complejos de Ubiquitina-Proteína Ligasa , Animales , Masculino , Ratones , Fertilidad/genética , Espermátides/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Transcriptoma , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
4.
Tissue Cell ; 78: 101893, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007377

RESUMEN

DPPA4 is essential for the pluripotent stem cell state, yet its function is poorly understood. DPPA4 is localized in the nucleus, where it is associated with active chromatin. We now report that it is also present in the cytosol, where it appears as diffused clouds, distinct foci and sometimes as spaghetti-like structures. This cytosolic localization is dynamic and DPPA4 shuttles between the cytosol and the nucleus. Its presence is almost abolished from the nucleus upon differentiation. Co-immunoprecipitation studies highlighted novel protein interactors, many of which are also found in the cytosol and are implicated in mRNA processing and RNA and protein transport between the cytosol and the nucleus. Finally, the depletion of DPPA4 resulted in cytosolic accumulation of vesicles. The cytosolic presence of DPPA4 highlights unexplored research directions that could significantly advance the understanding of DPPA4 in pluripotent stem cells and in cancer.


Asunto(s)
Proteínas Nucleares , Células Madre Pluripotentes , Núcleo Celular/metabolismo , Cromatina , Citosol/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo
5.
Asian J Androl ; 23(2): 178-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33208563

RESUMEN

Sperm-specific phospholipase C zeta (PLCζ) initiates intracellular calcium (Ca2+) transients which drive a series of concurrent events collectively termed oocyte activation. Numerous investigations have linked abrogation and absence/reduction of PLCζ with forms of male infertility in humans where oocyte activation fails. However, very few studies have examined potential relationships between PLCζ and advancing male age, both of which are increasingly considered to be major effectors of male fertility. Initial efforts in humans may be hindered by inherent PLCζ variability within the human population, alongside a lack of sufficient controllable repeats. Herein, utilizing immunoblotting, immunofluorescence, and quantitative reverse transcription PCR (qRT-PCR) we examined for the first time PLCζ protein levels and localization patterns in sperm, and PLCζ mRNA levels within testes, from mice at 8 weeks, 12 weeks, 24 weeks, and 36 weeks of age, from two separate strains of mice, C57BL/6 (B6; inbred) and CD1 (outbred). Collectively, advancing male age generally diminished levels and variability of PLCζ protein and mRNA in sperm and testes, respectively, when both strains were examined. Furthermore, advancing male age altered the predominant pattern of PLCζ localization in mouse sperm, with younger mice exhibiting predominantly post-acrosomal, and older mice exhibiting both post-acrosomal and acrosomal populations of PLCζ. However, the specific pattern of such decline in levels of protein and mRNA was strain-specific. Collectively, our results demonstrate a negative relationship between advancing male age and PLCζ levels and localization patterns, indicating that aging male mice from different strains may serve as useful models to investigate PLCζ in cases of male infertility and subfertility in humans.


Asunto(s)
Envejecimiento/genética , Fosfoinositido Fosfolipasa C/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Envejecimiento/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoinositido Fosfolipasa C/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Andrology ; 8(5): 1143-1159, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32298520

RESUMEN

BACKGROUND: Oocyte activation is driven by intracellular calcium (Ca2+ ) oscillations induced by sperm-specific PLCζ, abrogation of which causes oocyte activation deficiency in humans. Clinical PLCζ investigations have been limited to severe male infertility conditions, while PLCζ levels and localisation patterns have yet to be associated with general sperm viability. MATERIALS AND METHODS: PLCζ profiles were examined within a general population of males attending a fertility clinic (65 patients; aged 29-53), examining PLCζ throughout various fractions of sperm viability. Male recruitment criteria required a minimum sperm count of 5 × 106 spermatozoa/mL, while all female patients included in this study yielded at least five oocytes for treatment. Sperm count, motility and semen volume were recorded according to standard WHO reference guidelines and correlated with PLCζ profiles examined via immunoblotting and immunofluorescence. Appropriate fertility treatments were performed following routine clinical standard operating protocols, and fertilisation success determined by successful observation of second polar body extrusion. RESULTS AND DISCUSSION: Four distinct PLCζ patterns were observed at the equatorial, acrosomal + equatorial regions of the sperm head, alongside a dispersed pattern, and a population of spermatozoa without any PLCζ. Acrosomal + equatorial PLCζ correlated most to sperm health, while dispersed PLCζ correlated to decreased sperm viability. Total levels of PLCζ exhibited significant correlations with sperm parameters. PLCζ variance corresponded to reduced sperm health, potentially underlying cases of male sub-fertility and increasing male age. Finally, significantly higher levels of PLCζ were exhibited by cases of fertilisation success, alongside higher proportions of Ac + Eq, and lower levels of dispersed PLCζ. CONCLUSIONS: PLCζ potentially represents a biomarker of sperm health, and fertilisation capacity in general cases of patients seeking fertility treatment, and not just cases of repeated fertilisation. Further focused investigations are required with larger cohorts to examine the full clinical potential of PLCζ.


Asunto(s)
Fertilización , Infertilidad Masculina/enzimología , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/enzimología , Acrosoma/enzimología , Adulto , Supervivencia Celular , Humanos , Immunoblotting , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/terapia , Masculino , Persona de Mediana Edad , Técnicas Reproductivas Asistidas
8.
Biomaterials ; 216: 119283, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31247481

RESUMEN

Extracellular matrix (ECM) provides a scaffold for cells and tissues, but also supports organogenesis and tissue remodeling. The required instructive properties of the ECM to interact with cells depend on matrix architecture, structural proteins and functional matrix components such as growth factors, providing spatial, chemical and functional cues. Decellularized ECM (dECM) has been proposed as an instructive material that promotes tissue regeneration. We investigated the instructive ECM elements preserved in dECM and necessary to promote endothelial differentiation of human induced pluripotent stem cells (hiPSC). We show that detergent-decellularized human kidney ECM remains structurally intact and carries a number of heparin-binding growth factors, including FGF2, VEGF, BMP2, HGF, EGF, PDGF-BB and TGFß, albeit at reduced levels compared to native tissues. Clearance of these heparin-binding factors, or heparan-sulfate proteoclycans from ECM resulted in massively reduced differentiation of hiPSC, suggesting that remaining structural dECM proteins such as laminin, collagen or fibronectin alone are not instructive. In contrast, replenishing dECM with VEGF replaced medium-supplemented VEGF and resulted in more efficient differentiation of hiPSC into endothelial cells, and even in the absence of other culture-supplemented differentiation factors dECM alone was superior to geltrex. In conclusion, conditioning of dECM with specific growth factors acting as functional cues may allow to generate functional niches by selective promotion of cell attachment, survival and differentiation.


Asunto(s)
Células Endoteliales/citología , Matriz Extracelular/química , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor A de Crecimiento Endotelial Vascular/química
9.
Sci Rep ; 7(1): 10797, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883483

RESUMEN

TGF-ß1, a multifunctional regulator of cell growth and differentiation, is the most abundant bone matrix growth factor. During differentiation of human bone stromal cells (hBMSCs), which constitute bone marrow osteoblast (OS) and adipocyte (AD) progenitor cells, continuous TGF-ß1 (10 ng/ml) treatment enhanced OS differentiation as evidenced by increased mineralised matrix production. Conversely, pulsed TGF-ß1 administration during the commitment phase increased mature lipid-filled adipocyte numbers. Global gene expression analysis using DNA microarrays in hBMSCs treated with TGF-ß1 identified 1587 up- and 1716 down-regulated genes in OS-induced, TGF-ß1-treated compared to OS-induced hBMSCs (2.0 fold change (FC), p < 0.05). Gene ontology (GO) analysis revealed enrichment in 'osteoblast differentiation' and 'skeletal system development-associated' genes and up-regulation of several genes involved in 'osteoblastic-differentiation related signalling pathways'. In AD-induced, TGF-ß1-treated compared to AD-induced hBMSCs, we identified 323 up- and 369 down-regulated genes (2.0 FC, p < 0.05) associated with 'fat cell differentiation', 'fatty acid derivative biosynthesis process', 'fatty acid derivative metabolic process', and 'inositol lipid-mediated'. Serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2) was down-regulated 3-fold in TGF-ß1-treated hBMSCs. siRNA-mediated SERPINB2 inhibition enhanced OS and AD differentiation. Thus, TGF-ß signalling is important for hBMSC OS and AD differentiation and SERPINB2 is a TGF-ß-responsive gene that plays a negative regulatory role in hBMSC differentiation.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Serpinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Fenotipo , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta1/metabolismo
10.
Stem Cell Res ; 15(3): 449-458, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26413784

RESUMEN

Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic-committed mBMSCs (mBMSC(Adipo)), respectively. Bioinformatic analysis revealed the presence of a core set of canonical mBMSC CD markers with comparable expression levels in mBMSC(Bone) and mBMSC(Adipo) at baseline and during their differentiation. We identified 11 CD markers that are differentially expressed between mBMSC(Adipo) and mBMSC(Bone). Among these, we identified osteoprogenitor-associated CD markers expressed only in mBMSC(Bone): CD34, CD54, CD73, CD132, CD200, CD227 and adipoprogenitor-associated CD markers expressed only in mBMSC(Adipo): CD53, CD80, CD134, CD141 and CD212. FACS analysis confirmed these results. We selected CD34 for further analysis. CD34 was expressed at baseline of mouse stromal cell line ST2, primary mBMSCs, mBMSC(Bone) and its expression decreased during osteoblast differentiation. FACS-sorted CD34(+) primary mBMSCs exhibited higher expression of 70% osteoblast-associated genes, and formed significantly higher heterotopic bone in vivo when implanted subcutaneously in immune-deficient mice compared with CD34(-) primary mBMSCs. Our results demonstrate that a set of CD markers can distinguish osteoprogenitor versus adipoprogenitor populations of mBMSCs. CD34 is suitable for prospective isolation of mouse bone marrow osteoprogenitors.


Asunto(s)
Antígenos CD34/fisiología , Células de la Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Ratones , Osteoblastos/citología , Osteogénesis/efectos de los fármacos
11.
Sci Rep ; 5: 7927, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25604210

RESUMEN

Pluripotent cells can be subdivided into two distinct states, the naïve and the primed state, the latter being further advanced on the path of differentiation. There are substantial differences in the regulation of pluripotency between human and mouse, and in humans only stem cells that resemble the primed state in mouse are readily available. Reprogramming of human stem cells into a more naïve-like state is an important research focus. Here, we developed a pipeline to reanalyze transcriptomics data sets that describe both states, naïve and primed pluripotency, in human and mouse. The pipeline consists of identifying regulated start-ups/shut-downs in terms of molecular interactions, followed by functional annotation of the genes involved and aggregation of results across conditions, yielding sets of mechanisms that are consistently regulated in transitions towards similar states of pluripotency. Our results suggest that one published protocol for naïve human cells gave rise to human cells that indeed share putative mechanisms with the prototypical naïve mouse pluripotent cells, such as DNA damage response and histone acetylation. However, cellular response and differentiation-related mechanisms are similar between the naïve human state and the primed mouse state, so the naïve human state did not fully reflect the naïve mouse state.


Asunto(s)
Simulación por Computador , Daño del ADN , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Animales , Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Especificidad de la Especie
12.
Bone Rep ; 3: 32-39, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28377964

RESUMEN

Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal) that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT). Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited ≥ 2-fold change (FC) in hESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial-mesenchymal transition (EMT) were highly enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. hESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols.

13.
Front Physiol ; 4: 303, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194720

RESUMEN

Pluripotency in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is regulated by three transcription factors-OCT3/4, SOX2, and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behavior of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11) and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFß signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.

14.
PLoS One ; 7(6): e39896, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768158

RESUMEN

While human embryonic stem cells (hESCs) and human embryonal carcinoma cells (hECCs) have been studied extensively at the levels of the genome, transcriptome, proteome and epigenome our knowledge of their corresponding metabolomes is limited. Here, we present the metabolic signatures of hESCs and hESCs obtained by untargeted gas chromatography coupled to mass spectrometry (GC-MS). Whilst some metabolites are common to both cell types, representing the self-renewal and house-keeping signatures, others were either higher (e.g., octadecenoic acid, glycerol-3-phosphate, 4-hydroxyproline) or lower (e.g., glutamic acid, mannitol, malic acid, GABA) in hESCs (H9) compared to hECCs (NTERA2), these represent cell type specific signatures. Further, our combined results of GC-MS and microarray based gene expression profiling of undifferentiated and OCT4-depleted hESCs are consistent with the Warburg effect which is increased glycolysis in embryonic cells and tumor cells in the presence of O(2) while oxidative phosphorylation (OXPHOS) is impaired or even shut down. RNAi-based OCT4 knock down mediated differentiation resulted in the activation of the poised OXPHOS machinery by expressing missing key proteins such as NDUFC1, UQCRB and COX, increase in TCA cycle activity and decreased lactate metabolism. These results shed light on the metabolite layer of pluripotent stem cells and could potentially establish novel metabolic markers of self renewal and pluripotency.


Asunto(s)
Células Madre de Carcinoma Embrionario/metabolismo , Células Madre Embrionarias/metabolismo , Metaboloma , Animales , Diferenciación Celular/genética , Glucólisis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transducción de Señal , Transcriptoma/genética
15.
Proc Natl Acad Sci U S A ; 107(31): 13736-41, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20631301

RESUMEN

The longevity-promoting NAD+-dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a molecular pathway that involves the RNA-binding protein HuR and the arginine methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). SIRT1 down-regulation leads to reactivation of key developmental genes such as the neuroretinal morphogenesis effectors DLL4, TBX3, and PAX6, which are epigenetically repressed by this histone deacetylase in pluripotent human embryonic stem cells. Our results indicate that SIRT1 is regulated during stem cell differentiation in the context of a yet-unknown epigenetic pathway that controls specific developmental genes in embryonic stem cells.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sirtuina 1/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Línea Celular , Guanilato Ciclasa/metabolismo , Humanos , Ratones , Ratones Noqueados , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Estabilidad del ARN , Sirtuina 1/deficiencia , Sirtuina 1/genética
16.
Hum Mol Genet ; 14(21): 3129-40, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16159889

RESUMEN

Human embryonic stem cell (HESC) lines vary in their characteristics and behaviour not only because they are derived from genetically outbred populations, but also because they may undergo progressive adaptation upon long-term culture in vitro. Such adaptation may reflect selection of variants with altered propensity for survival and retention of an undifferentiated phenotype. Elucidating the mechanisms involved will be important for understanding normal self-renewal and commitment to differentiation and for validating the safety of HESC-based therapy. We have investigated this process of adaptation at the cellular and molecular levels through a comparison of early passage (normal) and late passage (adapted) sublines of a single HESC line, H7. To account for spontaneous differentiation that occurs in HESC cultures, we sorted cells for SSEA3, which marks undifferentiated HESC. We show that the gene expression programmes of the adapted cells partially reflected their aberrant karyotype, but also resulted from a failure in X-inactivation, emphasizing the importance in adaptation of karyotypically silent epigenetic changes. On the basis of growth potential, ability to re-initiate ES cultures and global transcription profiles, we propose a cellular differentiation hierarchy for maintenance cultures of HESC: normal SSEA3+ cells represent pluripotent stem cells. Normal SSEA3- cells have exited this compartment, but retain multilineage differentiation potential. However, adapted SSEA3+ and SSEA3- cells co-segregate within the stem cell territory, implying that adaptation reflects an alteration in the balance between self-renewal and differentiation. As this balance is also an essential feature of cancer, the mechanisms of culture adaptation may mirror those of oncogenesis and tumour progression.


Asunto(s)
Adaptación Fisiológica/fisiología , Diferenciación Celular/fisiología , Cromosomas Humanos/metabolismo , Embrión de Mamíferos/citología , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre/citología , Antígenos de Carbohidratos Asociados a Tumores , Diferenciación Celular/genética , Línea Celular , Cromosomas Humanos/genética , Cartilla de ADN , Citometría de Flujo , Perfilación de la Expresión Génica , Glicoesfingolípidos/metabolismo , Humanos , Microscopía Fluorescente , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antígenos Embrionarios Específico de Estadio , Inactivación del Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...