Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 254: 115380, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37075625

RESUMEN

The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.


Asunto(s)
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2 , Inhibidores de Proteasas/farmacología , Células CACO-2 , Pandemias , Péptido Hidrolasas/metabolismo , Antivirales/farmacología , Antivirales/química
2.
Molecules ; 28(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110801

RESUMEN

Sesamol is a phenolic lignan isolated from Sesamum indicum seeds and sesame oil. Numerous studies have reported that sesamol exhibits lipid-lowering and anti-atherogenic properties. The lipid-lowering effects of sesamol are evidenced by its effects on serum lipid levels, which have been attributed to its potential for significantly influencing molecular processes involved in fatty acid synthesis and oxidation as well as cholesterol metabolism. In this review, we present a comprehensive summary of the reported hypolipidemic effects of sesamol, observed in several in vivo and in vitro studies. The effects of sesamol on serum lipid profiles are thoroughly addressed and evaluated. Studies highlighting the ability of sesamol to inhibit fatty acid synthesis, stimulate fatty acid oxidation, enhance cholesterol metabolism, and modulate macrophage cholesterol efflux are outlined. Additionally, the possible molecular pathways underlying the cholesterol-lowering effects of sesamol are presented. Findings reveal that the anti-hyperlipidemic effects of sesamol are achieved, at least in part, by targeting liver X receptor α (LXRα), sterol regulatory element binding protein-1 (SREBP-1), and fatty acid synthase (FAS) expression, as well as peroxisome proliferator-activated receptor α (PPARα) and AMP activated protein kinase (AMPK) signaling pathways. A detailed understanding of the molecular mechanisms underlying the anti-hyperlipidemic potential of sesamol is necessary to assess the possibility of utilizing sesamol as an alternative natural therapeutic agent with potent hypolipidemic and anti-atherogenic properties. Research into the optimal sesamol dosage that may bring about such favorable hypolipidemic effects should be further investigated, most importantly in humans, to ensure maximal therapeutic benefit.


Asunto(s)
Benzodioxoles , Fenoles , Humanos , Fenoles/farmacología , Benzodioxoles/farmacología , Colesterol , Metabolismo de los Lípidos , Ácidos Grasos
3.
J Org Chem ; 88(3): 1600-1612, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637399

RESUMEN

The de novo assembly of stereochemically and skeletally diverse scaffolds is a powerful tool for the discovery of novel chemotypes. Hence, the development of modular, step- and atom-economic synthetic methods to access stereochemically and skeletally diverse compound collection is particularly important. Herein, we show a metal-free, stereodivergent build/couple/pair strategy that allows access to a unique collection of benzo[5,6][1,4]oxazino[4,3-a]quinazoline, quinolino[1,2-a]quinazoline and benzo[b]benzo [4,5]imidazo[1,2-d][1,4]oxazine scaffolds with complete diastereocontrol and wide distribution of molecular architectures. This metal-free process proceeds via desymmetrization of phenol derivatives. The cascade unites Mannich with aza-Michael addition reactions, providing expeditious entries to diverse classes of molecular shapes in a single operation.

4.
Front Biosci (Landmark Ed) ; 27(5): 166, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35638433

RESUMEN

Natural products with known safety profiles are a promising source for the discovery of new drug leads. Berberine presents an example of one such phytochemical that has been extensively studied for its anti-inflammatory and immunomodulatory properties against myriads of diseases, ranging from respiratory disorders to viral infections. A growing body of research supports the pluripotent therapeutic role berberine may play against the dreaded disease COVID-19. The exact pathophysiological features of COVID-19 are yet to be elucidated. However, compelling evidence suggests inflammation and immune dysregulations as major features of this disease. Being a potent immunomodulatory and anti-inflammatory agent, berberine may prove to be useful for the prevention and treatment of COVID-19. This review aims to revisit the pharmacological anti-inflammatory and immunomodulatory benefits of berberine on a multitude of respiratory infections, which like COVID-19, are known to adversely affect the airways and lungs. We speculate that berberine may help alleviate COVID-19 via preventing cytokine storm, restoring Th1/Th2 balance, and enhancing cell-mediated immunity. Furthermore, the role this promising phytochemical plays on other important inflammatory mediators involved in respiratory disorders will be underscored. We further highlight the role of berberine against COVID-19 by underscoring direct evidence from in silico, in vitro, and in vivo studies suggesting the inhibitory potential berberine may play against three critical SARS-CoV-2 targets, namely main protease, spike protein, and angiotensin-converting enzyme 2 receptor. Further preclinical and clinical trials are certainly required to further substantiate the efficacy and potency of berberine against COVID-19 in humans.


Asunto(s)
Berberina , Tratamiento Farmacológico de COVID-19 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Berberina/farmacología , Berberina/uso terapéutico , Humanos , Pulmón , SARS-CoV-2
5.
J Org Chem ; 87(2): 1377-1397, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35014258

RESUMEN

The complexity-to-diversity (CtD) strategy has become one of the most powerful tools used to transform complex natural products into diverse skeleta. However, the reactions utilized in this process are often limited by their compatibility with existing functional groups, which in turn restricts access to the desired skeletal diversity. In the course of employing a CtD strategy en route to the synthesis of natural product-inspired compounds, our group has developed several stereodivergent strategies employing indoloquinolizine natural product analogues as starting materials. These transformations led to the rapid and diastereoselective synthesis of diverse classes of natural product-like architectures, including camptothecin-inspired analogues, azecane medium-sized ring systems, arborescidine-inspired systems, etc. This manifestation required a drastic modification of the synthetic design that ultimately led to modular and diastereoselective access to a diverse collection of various classes of biologically significant natural product analogues. The reported strategies provide a unique platform that will be broadly applicable to other late-stage natural product transformation approaches.


Asunto(s)
Productos Biológicos , Estereoisomerismo
6.
Crit Rev Food Sci Nutr ; 62(18): 5081-5112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33544009

RESUMEN

Inflammation is associated with the development and progression of various disorders including atherosclerosis, diabetes mellitus and cancer. Sesamin, a fat-soluble lignan derived from Sesamum indicum seeds and oil, has received increased attention due to its wide array of pharmacological properties including its immunomodulatory and anti-inflammatory potential. To date, no review has been conducted to summarize or analyze the immunomodulatory and anti-inflammatory roles of sesamin. Herein, we provide a comprehensive review of experimental findings that were reported with regards to the ability of sesamin to modulate inflammation, cellular and humoral adaptive immune responses and Th1/Th2 paradigm. The potential influence of sesamin on the cytotoxic activity of NK cells against cancer cells is also highlighted. The molecular mechanisms and the signal transduction pathways underlying such effects are underscored. The metabolism, pharmacokinetics, absorption, tissue distribution and bioavailability of sesamin in different species, including humans, are reviewed. Moreover, we propose future preclinical and clinical investigations to further validate the potential preventive and/or therapeutic efficacy of sesamin against various immune-related and inflammatory conditions. We anticipate that sesamin may be employed in future therapeutic regimens to enhance the efficacy of treatment and dampen the adverse effects of synthetic chemical drugs currently used to alleviate immune-related and inflammatory conditions.


Asunto(s)
Lignanos , Sesamum , Antiinflamatorios/farmacología , Dioxoles , Humanos , Inmunidad , Inflamación/tratamiento farmacológico , Lignanos/farmacología , Sesamum/química
7.
J Org Chem ; 86(18): 12872-12885, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34477383

RESUMEN

The indolo[2,3-a]quinolizines, canthines, and arborescidines natural products exhibit a wide range of bioactivities including anticancer, antiviral, antibacterial, and anti-inflammatory, among others. Therefore, the development of modular and efficient strategies to access the core scaffolds of these classes of natural products is a remarkable achievement. The Complexity-to-Diversity (CtD) strategy has become a powerful tool that transforms natural products into skeletal and stereochemical diversity. However, many of the reactions that could be utilized in this process are limited by the type of functional groups present in the starting material, which restrict transformations into a variety of products to achieve the desired diversity. In the course of employing a (CtD) strategy en route to the synthesis of nature-inspired compounds, unexpected stereoelectronic-driven rearrangement reactions have been discovered. These reactions provided a rapid access to indolo[2,3-a]quinolizines-, canthines-, and arborescidines-inspired alkaloids in a modular and diastereoselective manner. The disclosed strategies will be widely applicable to other late-stage natural product transformation programs and drug discovery initiatives.


Asunto(s)
Alcaloides , Productos Biológicos , Descubrimiento de Drogas , Quinolizinas
8.
Eur J Pharmacol ; 909: 174420, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391767

RESUMEN

Atherosclerosis is a widespread and progressive chronic arterial disease that remains the leading cause of mortality and morbidity worldwide. It is generally accepted that atherosclerosis is a multifactorial disease characterized by dyslipidemia and inflammation in the vessel walls. Nonpharmacological interventions to treat chronic diseases like atherosclerosis have gained considerable attention in recent years. Thymoquinone (TQ), the major bioactive constituent of Nigella sativa seeds, presents one such example of a natural therapeutic agent that has captured the attention of many researchers due to its wide array of medicinal properties, including its potent anti-atherosclerotic effects. Various in vitro and in vivo studies support the potential of TQ in ameliorating hyperlipidemia, hypercholesterolemia, oxidative stress, and inflammation, all of which are key hallmarks of atherosclerosis. However, to date, no review has been conducted to substantiate the role of TQ in preventing and/or treating atherosclerosis. This comprehensive review aims to examine recent in vitro and in vivo experimental findings reported on the potential anti-atherosclerotic effects of TQ. The roles of TQ in combatting hyperlipidemia, oxidative stress, and inflammation in atherosclerosis are highlighted. We also shed light on the role of TQ in preventing foam cell formation by decreasing low-density lipoprotein (LDL) availability and oxidation. Moreover, recent findings on the protective role of TQ on early markers of atherosclerosis, including homocysteinemia and endothelial dysfunction, are also underscored. Experimental evidence suggests that TQ can potentially be employed as a natural therapeutic agent with minimal side effects against the development and/or progression of atherosclerosis and its associated complications.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Benzoquinonas/farmacología , Hiperlipidemias/tratamiento farmacológico , Nigella sativa/química , Animales , Aterosclerosis/sangre , Aterosclerosis/inmunología , Benzoquinonas/uso terapéutico , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/inmunología , Inflamación/sangre , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Estrés Oxidativo/efectos de los fármacos , Semillas/química , Resultado del Tratamiento
9.
Org Biomol Chem ; 18(42): 8526-8571, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33043327

RESUMEN

The last two decades or so have witnessed an upsurge in defining the art of designing complex natural products and nature-inspired molecules. Throughout these decades, fundamental insights into stereocontrolled, step-economic and atom-economical synthesis principles were achieved by the numerous synthetic accomplishments particularly in diversity-oriented synthesis (DOS). This has empowered the visualization of the third dimension in synthetic design and thus has resulted in a dramatic increase with today's diversity-oriented synthesis (DOS) at the forefront enabling access to diverse scaffolds with a high degree of stereochemical and skeletal complexity. To this end, a starting material-based approach is one of the powerful tools utilized in DOS that allows rapid access to molecular architectures with a high sp3 content. Skeletal and stereochemical diversity is often paramount for the selective modulation of the biological function of a complementary protein in the biological space. In this context, stereocontrolled transformation of cyclohexadienone scaffolds has positioned itself as a powerful platform for the rapid generation of stereochemically enriched and natural product-inspired compound collections. In this review, we cover multidirectional synthetic strategies that utilized cyclohexadienone derivatives as pluripotent building blocks en route for the construction of novel chemical space.

10.
J Org Chem ; 85(16): 10695-10708, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32806094

RESUMEN

Nitrogen and oxygen medium rings, in particular nine-membered rings, epitomize a unique area of chemical space that occurs in many natural products and biologically appealing compounds. The scarcity of 8- to 12-membered rings among clinically approved drugs is indicative of the difficulties associated with their synthesis, principally owing to the unfavorable entropy and transannular strain. We report here a scandium triflate-catalyzed reaction that allows for a modular access to a diverse collection of nine-membered ring heterocycles in a one-pot cascade and with complete diastereocontrol. This cascade features an intramolecular addition of an acyl group-derived enol to a α,ß-unsaturated carbonyl moiety, leading to N- and O-derived medium-ring systems. Computational studies using the density functional theory support the proposed mechanism. Additionally, a one-pot cascade leading to hexacyclic chromeno[3',4':2,3]indolizino[8,7-b]indole architectures, with six fused rings and four contiguous chiral centers, is reported. This novel cascade features many concerted events, including the formation of two azomethine ylides, [3 + 2]-cycloaddition, 1,3-sigmatropic rearrangement, Michael addition, and Pictet-Spengler reaction among others. Phenotypic screening of the resulting oxazonine collection identified chemical probes that regulate mitochondrial membrane potential, adenosine 5'-triphosphate contents, and reactive oxygen species levels in hepatoma cells (Hepa1-6), a promising approach for targeting cancer and metabolic disorders.

11.
Materials (Basel) ; 13(4)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075305

RESUMEN

The employment of plant extracts in the synthesis of metal nanoparticles is a very attractive approach in the field of green synthesis. To benefit from the potential synergy between the biological activities of the Moringa oleifera and metallic bismuth, our study aimed to achieve a green synthesis of phytochemical encapsulated bismuth nanoparticles using a hydroalcoholic extract of M. oleifera leaves. The total phenolic content in the M. oleifera leaves extract used was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The physical properties of the synthesized bismuth nanoparticles were characterized using UV-Vis spectrophotometer, FT-IR spectrometer, TEM, SEM, and XRD. The size of the synthesized bismuth nanoparticles is in the range of 40.4-57.8 nm with amorphous morphology. Using DPPH and phosphomolybdate assays, our findings revealed that the M. oleifera leaves extract and the synthesized bismuth nanoparticles possess antioxidant properties. Using resazurin microtiter assay, we also demonstrate that the M. oleifera leaves extract and the synthesized bismuth nanoparticles exert potent anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (estimated MIC values for the extract: 500, 250, 250, and 250 µg/mL; estimated MIC values for the bismuth nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized bismuth nanoparticles display relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (estimated MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; estimated MIC values for the bismuth nanoparticles: 250, 250, 62.5, and 62.5 µg/mL, respectively). Thus, green synthesis of bismuth nanoparticles using M. oleifera leaves extract was successful, showing a positive antioxidant, anti-bacterial, and anti-fungal activity. Therefore, the synthesized bismuth nanoparticles can potentially be employed in the alleviation of symptoms associated with oxidative stress and in the topic treatment of Candida infections.

12.
Molecules ; 25(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012912

RESUMEN

: The synthesis of metal nanoparticles using plant extracts is a very promising method in green synthesis. The medicinal value of Moringa oleifera leaves and the antimicrobial activity of metallic copper were combined in the present study to synthesize copper nanoparticles having a desirable added-value inorganic material. The use of a hydroalcoholic extract of M. oleifera leaves for the green synthesis of copper nanoparticles is an attractive method as it leads to the production of harmless chemicals and reduces waste. The total phenolic content in the M. oleifera leaves extract was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The M. oleifera leaves extract was treated with a copper sulphate solution. A color change from brown to black indicates the formation of copper nanoparticles. Characterization of the synthesized copper nanoparticles was performed using ultraviolet-visible light (UV-Vis) spectrophotometry, Fourier-transform infrared (FTIR) spectrometry, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The synthesized copper nanoparticles have an amorphous nature and particle size of 35.8-49.2 nm. We demonstrate that the M. oleifera leaves extract and the synthesized copper nanoparticles display considerable antioxidant activity. Moreover, the M. oleifera leaves extract and the synthesized copper nanoparticles exert considerable anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (MIC values for the extract: 500, 250, 250, and 250 µg/mL; MIC values for the copper nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized copper nanoparticles exert relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; MIC values for the copper nanoparticles: 125, 125, 62.5, and 31.2 µg/mL, respectively). Our study reveals that the green synthesis of copper nanoparticles using a hydroalcoholic extract of M. oleifera leaves was successful. In addition, the synthesized copper nanoparticles can be potentially employed in the treatment of various microbial infections due to their reported antioxidant, anti-bacterial, and anti-fungal activities.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Cobre/química , Moringa oleifera/química , Fenoles/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antioxidantes/síntesis química , Antioxidantes/química , Bacterias/efectos de los fármacos , Cápsulas , Hongos/efectos de los fármacos , Tecnología Química Verde , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula , Extractos Vegetales/química , Hojas de la Planta/química
13.
Chemistry ; 25(69): 15710-15735, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31365773

RESUMEN

Diversity-oriented synthesis (DOS) has become a powerful synthetic tool that facilitates the construction of nature-inspired and privileged chemical space, particularly for sp3 -rich non-flat scaffolds, which are needed for phenotypic screening campaigns. These diverse compound collections led to the discovery of novel chemotypes that can modulate the protein function in underrepresented biological space. In this context, starting material-driven DOS is one of the most important tools used to build diverse compound libraries with rich stereochemical and scaffold diversity. To this end, ene/yne tethered salicylaldehyde derivatives have emerged as a pluripotent chemical platform, the products of which led to the construction of a privileged chemical space with significant biological activities. In this review, various domino transformations employing o-alkene/alkyne tethered aryl aldehyde/ketone platforms are described and discussed, with emphasis on the period from 2011 to date.

14.
J Org Chem ; 84(2): 934-948, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30582335

RESUMEN

The development of efficient and modular synthetic methods for the synthesis of diverse collection of privileged substructures needed for a drug design and discovery campaign is highly desirable. Benzoxazepine and indolopyrazine ring systems form the core structures of distinct members of biologically significant molecules. Several members of these families have gained attention due to their broad biological activities, which depend on the type of ring-fusion and peripheral substitution patterns. Despite the potential applications of these privileged substructures in drug discovery, efficient, atom-economic, and modular strategies for their access are underdeveloped. Herein, a one-step build/couple/pair strategy that uniquely allows access to diversely functionalized benzoxazepine and indolopyrazine scaffolds is described. The methodology features a one-pot combination of condensation, Mannich, oxidation, and aza-Michael addition reactions, employing a variety of functionalized anilines and aldehydes suitably poised with Micheal acceptor. Scandium triflate (Sc(OTf)3) in acetonitrile (ACN) was found to promote the construction of benzoxazepines scaffolds, while sodium metabisulfite (Na2S2O5) in aqueous EtOH rapidly enhanced the cascade reaction that led to diverse collections of indolopyrazine frameworks. These protocols represent modular, efficient, and atom-economic access of constrained benzoxazepine and indolopyrazine systems with more than 10 points of diversity and large substrate tolerance.

15.
Molecules ; 22(2)2017 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-28208680

RESUMEN

The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Garcinia mangostana/química , Xantonas/química , Xantonas/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Xantonas/síntesis química , Xantonas/aislamiento & purificación
16.
Int J Pharm Investig ; 6(2): 86-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27051628

RESUMEN

INTRODUCTION: The aim of this study is to evaluate gatifloxacin-loaded sodium alginate hydrogel membranes, supplemented with glycerol (a plasticizer), glutaraldehyde (a cross-linking agent), and hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) polymers, as potential wound dressing materials based on their physicochemical properties and the sustain-release phenomenon. MATERIALS AND METHODS: The physicochemical properties of the prepared hydrogel membranes were evaluated by several methods including Fourier transform infrared and differential scanning calorimetry. Different techniques were used to assess the swelling behavior, tensile strength and elongation, % moisture absorption, % moisture loss, water vapor transmission rate (WVTR), and microbial penetration for the hydrogel membranes. In vitro gatifloxacin release from the hydrogel membranes was examined using the United States Pharmacopeia XXIII dissolution apparatus. Four kinetics models (zero-order, first-order, Higuchi equation, and Korsmeyer-Peppas equation) were applied to study drug release kinetics. RESULTS: The addition of glycerol, glutaraldehyde, HPMC, and HPC polymers resulted in a considerable increase in the tensile strength and flexibility/elasticity of the hydrogel membranes. WVTR results suggest that hydrated hydrogel membranes can facilitate water vapor transfer. None of the hydrogel membranes supported microbial growth. HPMC-treated and HPC-treated hydrogel membranes allow slow, but sustained, release of gatifloxacin for 48 h. Drug release kinetics revealed that both diffusion and dissolution play an important role in gatifloxacin release. CONCLUSIONS: Given their physicochemical properties and gatifloxacin release pattern, HPMC-treated and HPC-treated hydrogel membranes exhibit effective and sustained drug release. Furthermore, HPMC-treated and HPC-treated hydrogel membranes possess physiochemical properties that make them effective and safe wound dressing materials.

17.
Anal Chem ; 81(1): 435-42, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19117466

RESUMEN

A new composite electrode has been fabricated using multiwall carbon nanotubes (MWCNT) and the ionic liquid n-octylpyridinum hexafluorophosphate (OPFP). This electrode shows very attractive electrochemical performances compared to other conventional electrodes using graphite and mineral oil, notably improved sensitivity and stability. One major advantage of this electrode compared to other electrodes using carbon nanotubes and other ionic liquids is its extremely low capacitance and background currents. A 10% (w/w) loading of MWCNT was selected as the optimal composition based on voltammetric results, as well as the stability of the background response in solution. The new composite electrode showed good activity toward hydrogen peroxide and NADH, with the possibility of fabricating a sensitive biosensor for glucose and alcohol using glucose oxidase and alcohol dehydrogenase, respectively, by simply incorporating the specific enzyme within the composite matrix. The marked electrode stability and antifouling features toward NADH oxidation was much higher for this composite compared to a bare glassy carbon electrode. While a loading of 2% MWCNT showed very poor electrochemical behavior, a large enhancement was observed upon gentle heating to 70 degrees C, which gave a response similar to the optimum composition of 10%. The ease of preparation, low background current, high sensitivity, stability, and small loading of nanotubes using this composite can create new novel avenues and applications for fabricating robust sensors and biosensors for many important species.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Compuestos de Piridinio/química , Electrodos , Glucosa/química , Grafito/química , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , NAD/análisis , NAD/química , Oxidación-Reducción
18.
Sensors (Basel) ; 9(10): 8158-96, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22408500

RESUMEN

A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented.

19.
Biochem Biophys Res Commun ; 311(3): 728-34, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14623333

RESUMEN

Incubation of porcine coronary artery rings and cardiac muscle tissue in Krebs buffer followed by GC/MS analysis of the headspace gas revealed two gases, carbonyl sulfide (COS) and sulfur dioxide (SO(2)). The gases were identified by characteristic ions obtained by electron ionization, and by comparison of the retention time on a chromatographic column (GS GasPro) with standards of these gases. Stimulation of the arterial rings with acetylcholine and calcium ionophore A23187 increased the levels of SO(2) and COS in the vascular tissue. We also provide evidence that SO(2) could originate from disproportionation of a very unstable gas, sulfur monoxide (S=O). We suggest potential origins of these gases and discuss their relevance to endothelium-derived hyperpolarizing factor.


Asunto(s)
Factores Biológicos/metabolismo , Vasos Coronarios/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Dióxido de Azufre/metabolismo , Óxidos de Azufre/metabolismo , Animales , Modelos Químicos , Miocardio/metabolismo , Porcinos , Temperatura , Factores de Tiempo
20.
J Org Chem ; 62(24): 8366-8371, 1997 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-11671974

RESUMEN

When triphenylmethanesulfenyl chloride (12) (or its thio 13 or dithio homolog 14) are treated with hindered olefins 15 and 16, thiiranes 10 and 11 are produced in high isolated yields (ca. 94%). Treatment of 10 and 11 with m-chloroperoxybenzoic acid (m-CPBA) leads to the formation of thiirane 1-oxides 8 and 9 (99% isolated yields). The structures of 8-11 were established by (1)H and (13)C NMR, mass spectrometry as well as by X-ray. Thermal decomposition of either 8 or 9 smoothly delivers sulfur monoxide to various 1,3-dienes giving cyclic sulfoxides in good yield. A variety of conditions were employed to optimize the yield of the trapped adducts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...