Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 435(3): 167920, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528084

RESUMEN

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) has been identified as a nuclear DNA sensor. Upon viral infection, hnRNP A2/B1 recognizes pathogen-derived DNA as a homodimer, which is a prerequisite for its translocation to the cytoplasm to activate the interferon response. However, the DNA binding mechanism inducing hnRNP A2/B1 homodimerization is unknown. Here, we show the crystal structure of the RNA recognition motif (RRM) of hnRNP A2/B1 in complex with a U-shaped ssDNA, which mediates the formation of a newly observed protein dimer. Our biochemical assays and mutagenesis studies confirm that the hnRNP A2/B1 homodimer forms in solution by binding to pre-generated ssDNA or dsDNA with a U-shaped bulge. These results depict a potential functional state of hnRNP A2/B1 in antiviral immunity and other cellular processes.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Multimerización de Proteína , ADN/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo
2.
Mol Biotechnol ; 65(1): 108-115, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35838865

RESUMEN

Exoribonucleases are frequently used as nuclei acids detection tools for their sequences, modifications, and structures. Escherichia coli ribonuclease R (EcR) is the prototypical exoribonuclease of the RNase II/RNB family degrading RNA in the 3'-5' direction. Different from RNase II, EcR is capable of degrading structured RNA efficiently, which makes it a potential analysis tool for various RNA species. In this work, we examined the nuclease activity of EcR degrading a series of RNA substrates with various sequences. Our biochemical work reveals that EcR is significantly sensitive to cytosine compared with other bases when catalyzing RNA degradation. EcR shows higher cytosine sensitivity compared to its homolog RNase II when degrading RNAs, and the hydrolysis process of EcR is transiently halted and produces apparent intermediate product when the 1-nt upstream of C is A or U, or G. Furthermore, the substitution of glycine with proline (G273P) in EcR enhances its cytosine sensitivity. These findings expand our understanding of EcR enzymatic activities. The EcR G273P mutant bearing higher cytosine sensitivity could help enrich cytosine trails in RNAs and will have potential implications in the detection and analysis of various RNA species especially small RNAs in biological and clinical samples.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sustitución de Aminoácidos , ARN/metabolismo
3.
Nucleic Acids Res ; 49(8): 4738-4749, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788943

RESUMEN

RNA 2'-O-methylation is widely distributed and plays important roles in various cellular processes. Mycoplasma genitalium RNase R (MgR), a prokaryotic member of the RNase II/RNB family, is a 3'-5' exoribonuclease and is particularly sensitive to RNA 2'-O-methylation. However, how RNase R interacts with various RNA species and exhibits remarkable sensitivity to substrate 2'-O-methyl modifications remains elusive. Here we report high-resolution crystal structures of MgR in apo form and in complex with various RNA substrates. The structural data together with extensive biochemical analysis quantitively illustrate MgR's ribonuclease activity and significant sensitivity to RNA 2'-O-methylation. Comparison to its related homologs reveals an exquisite mechanism for the recognition and degradation of RNA substrates. Through structural and mutagenesis studies, we identified proline 277 to be responsible for the significant sensitivity of MgR to RNA 2'-O-methylation within the RNase II/RNB family. We also generated several MgR variants with modulated activities. Our work provides a mechanistic understanding of MgR activity that can be harnessed as a powerful RNA analytical tool that will open up a new venue for RNA 2'-O-methylations research in biological and clinical samples.


Asunto(s)
Exorribonucleasas/química , Mycoplasma genitalium/química , ARN/química , Ribosa/metabolismo , Catálisis , Dominio Catalítico/genética , Cromatografía Liquida , Cristalografía por Rayos X , Escherichia coli/metabolismo , Exorribonucleasas/metabolismo , Metilación , Mutagénesis , Mutación , Mycoplasma genitalium/enzimología , Unión Proteica , Dominios Proteicos , ARN/metabolismo , Estabilidad del ARN , Proteínas Recombinantes , Especificidad por Sustrato , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA