Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066322

RESUMEN

Small bowel neuroendocrine tumors (SBNETs) originate from enterochromaffin cells in the intestine which synthesize and secrete serotonin. SBNETs express high levels of tryptophan hydroxylase 1 (Tph1), a key enzyme in serotonin biosynthesis. Patients with high serotonin level may develop carcinoid syndrome, which can be treated with somatostatin analogues and the Tph1 inhibitor telotristat ethyl in severe cases. Although the active drug telotristat can efficiently reduce serotonin levels, its effect on tumor growth is unclear. This study determined the effect of serotonin inhibition on tumor cell growth in vitro and in vivo . The levels of Tph1 in various neuroendocrine neoplasms (NENs) were determined and the biological effects of Tph1 inhibition in vitro and in vivo using genetic and pharmacologic approaches was tested. Gene and protein expression analyses were performed on patient tumors and cancer cell lines. shRNAs targeting TPH1 were used to create stable knockdown in BON cells. Control and knockdown lines were assessed for their growth rates in vitro and in vivo , angiogenesis potential, serotonin levels, endothelial cell tube formation, tumor weight, and tumor vascularity. TPH1 is highly expressed in SBNETs and many cancer types. TPH1 knockdown cells and telotristat treated cells showed similar growth rates as control cells in vitro . However, TPH1 knockdown cells formed smaller tumors in vivo and tumors were less vascularized. Although Tph1 inhibition with telotristat showed no effect on tumor cell growth in vitro , Tph1 inhibition reduced tumor formation in vivo . Serotonin inhibition in combination with other therapies is a promising new avenue for targeting metabolic vulnerabilities in NENs.

2.
Cancers (Basel) ; 14(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35454817

RESUMEN

Gastroenteropancreatic neuroendocrine neoplasms (GEP NENs) are rare cancers consisting of neuroendocrine carcinomas (NECs) and neuroendocrine tumors (NETs), which have been increasing in incidence in recent years. Few cell lines and pre-clinical models exist for studying GEP NECs and NETs, limiting the ability to discover novel imaging and treatment modalities. To address this gap, we isolated tumor cells from cryopreserved patient GEP NECs and NETs and injected them into the flanks of immunocompromised mice to establish patient-derived xenograft (PDX) models. Two of six mice developed tumors (NEC913 and NEC1452). Over 80% of NEC913 and NEC1452 tumor cells stained positive for Ki67. NEC913 PDX tumors expressed neuroendocrine markers such as chromogranin A (CgA), synaptophysin (SYP), and somatostatin receptor-2 (SSTR2), whereas NEC1452 PDX tumors did not express SSTR2. Exome sequencing revealed loss of TP53 and RB1 in both NEC tumors. To demonstrate an application of these novel NEC PDX models for SSTR2-targeted peptide imaging, the NEC913 and NEC1452 cells were bilaterally injected into mice. Near infrared-labelled octreotide was administered and the fluorescent signal was specifically observed for the NEC913 SSTR2 positive tumors. These 2 GEP NEC PDX models serve as a valuable resource for GEP NEN therapy testing.

3.
J Vis Exp ; (152)2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31657801

RESUMEN

Small bowel neuroendocrine tumors (SBNETs) are rare cancers originating from enterochromaffin cells of the gut. Research in this field has been limited because very few patient derived SBNET cell lines have been generated. Well-differentiated SBNET cells are slow growing and are hard to propagate. The few cell lines that have been established are not readily available, and after time in culture may not continue to express characteristics of NET cells. Generating new cell lines could take many years since SBNET cells have a long doubling time and many enrichment steps are needed in order to eliminate the rapidly dividing cancer-associated fibroblasts. To overcome these limitations, we have developed a protocol to culture SBNET cells from surgically removed tumors as spheroids in extracellular matrix (ECM). The ECM forms a 3-dimensional matrix that encapsulates SBNET cells and mimics the tumor micro-environment for allowing SBNET cells to grow. Here, we characterized the growth rate of SBNET spheroids and described methods to identify SBNET markers using immunofluorescence microscopy and immunohistochemistry to confirm that the spheroids are neuroendocrine tumor cells. In addition, we used SBNET spheroids for testing the cytotoxicity of rapamycin.


Asunto(s)
Neoplasias Intestinales/química , Intestino Delgado/química , Tumores Neuroendocrinos/química , Neoplasias Pancreáticas/química , Esferoides Celulares/química , Neoplasias Gástricas/química , Células Enterocromafines/química , Células Enterocromafines/patología , Humanos , Inmunohistoquímica , Neoplasias Intestinales/patología , Intestino Delgado/patología , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Esferoides Celulares/patología , Neoplasias Gástricas/patología , Células Tumorales Cultivadas , Microambiente Tumoral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...