Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(25): 9856-9867, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307497

RESUMEN

Roasting is an important unit operation for the development of characteristic chocolate aroma during manufacturing. However, there is an increase in interest in minimally processed chocolate products due to their potential positive health benefits. The odor-important compounds and sensory characteristics of minimally processed (unroasted) and conventionally roasted dark chocolates were determined by gas chromatography-olfactometry, aroma extract dilution analysis (AEDA), and stable isotope dilution analysis (SIDA). Except for acetic acid, all odorants had higher odor-activity values (OAVs) in roasted chocolate. Acetic acid, developed during fermentation and drying, had the highest OAV in both chocolates but was better preserved in unroasted chocolate. Compounds making a greater aroma impact on roasted chocolate compared with unroasted chocolate included dimethyl trisulfide, 2-ethyl-3,5-dimethylpyrazine, and 3-methylbutanal. Nine significant sensory attributes in unroasted and roasted chocolates were identified. Vinegar (aroma) and roasted (aroma and aroma by mouth), sweet (taste), and hardness (texture) attributes differed between unroasted and roasted chocolates. The results of this study enforce the embracement of low thermal processes to showcase the inherent flavor potential of cacao beans but also to support the concept of chocolate "terroir" by potentially preserving important aroma compounds developed during fermentation.


Asunto(s)
Cacao , Chocolate , Compuestos Orgánicos Volátiles , Chocolate/análisis , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases , Olfatometría
2.
PLoS One ; 17(2): e0261989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35108270

RESUMEN

Elevated cadmium (Cd) concentrations in cacao and cocoa-based products (e.g., chocolate) present a potentially serious human health risk. While recent regulatory changes have established a threshold of 0.8 mg kg-1 for Cd content of cocoa-based products, the biophysical factors (e.g., climatic or edaphic conditions) that determine the amount of soil-derived Cd in the cacao bean are poorly understood and have yet to be quantitatively assessed across diverse production contexts. To determine the primary drivers of cacao bean Cd, we used the scientific literature to systematically compile a database of climatic, edaphic, and plant data from across the Cacao Belt, which is approximately 20 degrees latitude on either side of the equator. From this compiled dataset, we then used boosted regression trees to quantitatively synthesize and evaluate these drivers of cacao bean Cd. Total soil Cd concentration, soil pH, and leaf Cd were the best predictors of bean Cd content. Notably, we found that both available soil Cd and soil organic carbon (SOC) content had negligible effects on bean Cd. However, soil pH and SOC decreased the degree of bioconcentration of total soil Cd in the bean Cd concentration. Thus, given the difficulty in remediating soil Cd enriched soils, our results suggest that Cd mitigation strategies targeting plant physiology-based approaches (e.g., breeding, rootstocks) have a higher probability of success than soil-based strategies (e.g., remediation).


Asunto(s)
Cacao/química , Cadmio/análisis , Bioacumulación/fisiología , Cacao/metabolismo , Bases de Datos Factuales , Concentración de Iones de Hidrógeno , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Semillas/química , Semillas/metabolismo , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...