Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4826-4829, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086241

RESUMEN

Inaccurate estimation of skull conductivity is the largest impediment to high-resolution EEG source imaging because of its strong influence and wide variability across individuals. Nonetheless, there is yet no widely applied method for noninvasively measuring individual skull conductivity. We presented a skull conductivity and source location estimation algorithm (SCALE) for simultaneously estimating skull conductivity and the cortical distributions of 18-20 effective sources derived from the EEG data by independent component analysis (ICA). SCALE combines a realistic Finite Element Method (FEM) head model built from a magnetic resonance (MR) head image with the effective source scalp maps to estimate brain-to-skull conductivity ratio (BSCR) and to map the effective sources on the cortical surface. To estimate the robustness of SCALE BSCR estimates, we applied SCALE to MR image and high-density EEG data from ten participants, five having data from 2-3 different tasks and sessions. As expected, across participants SCALE BSCR estimates differed widely (mean 32.8, range 18-78). Within-participant SCALE BSCR estimates were far more consistent than between participants. By incorporating SCALE-optimized distributed EEG source localization, stable functional imaging of cortical EEG effective sources can become routine, giving relatively low-cost EEG imaging a spatial resolution compatible with other brain imaging results and uniquely capable for studying brain dynamics supporting thought and action in laboratory, virtual, and natural environments.


Asunto(s)
Electroencefalografía , Cráneo , Algoritmos , Conductividad Eléctrica , Electroencefalografía/métodos , Humanos , Cuero Cabelludo , Cráneo/diagnóstico por imagen
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 117-120, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268293

RESUMEN

Recently we described an iterative skull conductivity and source location estimation (SCALE) algorithm for simultaneously estimating head tissue conductivities and brain source locations. SCALE uses a realistic FEM forward problem head model and scalp maps of 10 or more near-dipolar sources identified by independent component analysis (ICA) decomposition of sufficient high-density EEG data. In this study, we applied SCALE to 20 minutes of 64-channel EEG data and magnetic resonance (MR) head images from four twelve-months-of-age infants. For each child, we selected 15-16 near-dipolar independent components from multiple-model adaptive mixture ICA (AMICA) decomposition of their EEG data. SCALE converged to brain-to-skull conductivity ratio (BSCR) estimates in the 10-12 range and mostly compact gyral or sulcal cortical distributions for the IC sources.


Asunto(s)
Encéfalo/anatomía & histología , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Modelos Biológicos , Cráneo/anatomía & histología , Encéfalo/fisiología , Humanos , Lactante , Cráneo/fisiología
3.
Neuroimage ; 112: 52-60, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25731992

RESUMEN

Contemporary active-EEG and EEG-imaging methods show particular promise for studying the development of action planning and social-action representation in infancy and early childhood. Action-related mu suppression was measured in eleven 3-year-old children and their mothers during a 'live,' largely unscripted social interaction. High-density EEG was recorded from children and synchronized with motion-captured records of children's and mothers' hand actions, and with video recordings. Independent Component Analysis (ICA) was used to separate brain and non-brain source signals in toddlers' EEG records. EEG source dynamics were compared across three kinds of epochs: toddlers' own actions (execution), mothers' actions (observation), and between-turn intervals (no action). Mu (6-9Hz) power was suppressed in left and right somatomotor cortex during both action execution and observation, as reflected by independent components of individual children's EEG data. These mu rhythm components were accompanied by beta-harmonic (~16Hz) suppression, similar to findings from adults. The toddlers' power spectrum and scalp density projections provide converging evidence of adult-like mu-suppression features. Mu-suppression components' source locations were modeled using an age-specific 4-layer forward head model. Putative sources clustered around somatosensory cortex, near the hand/arm region. The results demonstrate that action-locked, event-related EEG dynamics can be measured, and source-resolved, from toddlers during social interactions with relatively unrestricted social behaviors.


Asunto(s)
Electroencefalografía/métodos , Relaciones Interpersonales , Neuroimagen/métodos , Adulto , Brazo/inervación , Ritmo beta/fisiología , Encéfalo/anatomía & histología , Preescolar , Potenciales Evocados/fisiología , Femenino , Lateralidad Funcional/fisiología , Mano/inervación , Humanos , Lactante , Masculino , Madres , Corteza Motora/fisiología , Análisis de Componente Principal , Corteza Somatosensorial/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-22254582

RESUMEN

Mapping the dynamics and spatial topography of brain source processes critically involved in initiating and propagating seizure activity is critical for effective epilepsy diagnosis, intervention, and treatment. In this report we analyze neuronal dynamics before and during epileptic seizures using adaptive multivariate autoregressive (VAR) models applied to maximally-independent (ICA) sources of intracranial EEG (iEEG, ECoG) data recorded from subdural electrodes implanted in a human patient for evaluation of surgery for epilepsy. We visualize the spatial distribution of causal sources and sinks of ictal activity on the cortical surface (gyral and sulcal) using a novel combination of multivariate Granger-causal and graph-theoretic metrics combined with distributed source localization by Sparse Bayesian Learning applied to a multi-scale patch basis. This analysis reveals and visualizes distinct, seizure stage-dependent shifts in inter-component spatiotemporal dynamics and connectivity including the clinically-identified epileptic foci.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Diagnóstico por Computador/métodos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Modelos Neurológicos , Red Nerviosa/fisiopatología , Algoritmos , Simulación por Computador , Epilepsia/diagnóstico , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Artículo en Inglés | MEDLINE | ID: mdl-22255194

RESUMEN

Here we report first results of numerical methods for modeling the dynamic structure and evolution of epileptic seizure activity in an intracranial subdural electrode recording from a patient with partial refractory epilepsy. A 16-min dataset containing two seizures was decomposed using up to five competing adaptive mixture independent component analysis (AMICA) models. Multiple models modeled early or late ictal, or pre- or post-ictal periods in the data, respectively. To localize sources, a realistic Boundary Element Method (BEM) head model was constructed for the patient with custom open skull and plastic (non-conductive) electrode holder features. Source localization was performed using Sparse Bayesian Learning (SBL) on a dictionary of overlapping multi-scale cortical patches constructed from 80,130 dipoles in gray matter perpendicular to the cortical surface. Remaining mutual information among seizure-model AMICA components was dominated by two dependent component subspaces with largely contiguous source domains localized to superior frontal gyrus and precentral gyrus; these accounted for most of the ictal activity. Similar though much weaker dependent subspaces were also revealed in pre-ictal data by the associated AMICA model. Electrocortical source imaging appears promising both for clinical epilepsy research and for basic cognitive neuroscience research using volunteer patients who must undergo invasive monitoring for medical purposes.


Asunto(s)
Corteza Cerebral/fisiopatología , Electroencefalografía/métodos , Epilepsias Parciales/fisiopatología , Humanos , Modelos Neurológicos
6.
J Neurosci Methods ; 190(2): 258-70, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20457183

RESUMEN

This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) running under MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or electrode locations) and for computing numerical solutions for the forward problem of electromagnetic source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface BEM meshes can be generated. When a subject MR image is not available, a template head model can be warped to measured electrode locations to obtain an individualized head model. Toolbox functions may be called either from a graphic user interface compatible with EEGLAB (http://sccn.ucsd.edu/eeglab), or from the MATLAB command line. Function help messages and a user tutorial are included. The toolbox is freely available under the GNU Public License for noncommercial use and open source development.


Asunto(s)
Simulación por Computador , Cabeza/fisiología , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Programas Informáticos , Acceso a la Información , Algoritmos , Anisotropía , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Humanos , Internet , Interfaz Usuario-Computador
7.
Artículo en Inglés | MEDLINE | ID: mdl-19964603

RESUMEN

In this study, we developed numerical methods for investigating the sources of epileptic activity from intracranial EEG recordings acquired from intracranial subdural electrodes (iEEG) in patients undergoing pre-surgical evaluation at the epilepsy center of the Mayo Clinic (Rochester, MN). The data were analyzed using independent component analysis (ICA), which identifies and isolates maximally independent signal components in multi-channel recordings. A realistic individual head model was constructed for a patient undergoing pre-surgical evaluation. Structural models of gray matter, white matter, CSF, skull, and scalp were extracted from pre-surgical MR and post-surgical CT images. The electromagnetic source localization forward problem was solved using the Boundary Element Method (BEM). Source localization was performed using the Sparse Bayesian Learning (SBL) algorithm. The multiscale patch-basis source space constructed for this purpose includes a large number of dipole elements on the cortical layer oriented perpendicular to the local cortical surface. These source dipoles are combined into overlapping multi-scalepatches. Using this approach, we were able to detect seizure activity on sulcal walls and on gyrus of the cortex.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/fisiopatología , Técnicas de Placa-Clamp , Algoritmos , Teorema de Bayes , Mapeo Encefálico/métodos , Corteza Cerebral/metabolismo , Electroencefalografía/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Distribución Normal , Análisis de Componente Principal , Radiación , Convulsiones/fisiopatología , Procesamiento de Señales Asistido por Computador , Tomografía Computarizada por Rayos X
8.
Artículo en Inglés | MEDLINE | ID: mdl-19163530

RESUMEN

In this study, we developed numerical methods for investigating the dynamics of epilepsy from multi-scale EEG recordings acquired simultaneously from the scalp (sEEG) and intracranial subdural and/or depth electrodes (iEEG) in patients undergoing pre-surgical evaluation at the epilepsy center of the Mayo Clinic (Rochester, MN). The data are analyzed using independent component analysis (ICA), which identifies and isolates independent signal components from multi-channel recordings. A realistic individual head model was constructed for a patient undergoing pre-surgical evaluation. The forward problem of electro-magnetic source localization was solved using the Boundary Element Method (BEM). Using this approach, we investigated the relationships between noninvasive and invasive source localization of human electrical brain data sources. A difference of about 1 cm was observed between sources estimated from sEEG and iEEG measurements.


Asunto(s)
Corteza Cerebral/fisiología , Diagnóstico por Imagen/estadística & datos numéricos , Electroencefalografía/estadística & datos numéricos , Epilepsia/fisiopatología , Cabeza/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Corteza Cerebral/patología , Simulación por Computador , Electrofisiología , Epilepsia/patología , Análisis de Elementos Finitos , Cabeza/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Anatómicos , Análisis de Componente Principal , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...