Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 120(6): 2922-2938, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256736

RESUMEN

Dopamine (DA) depletion modifies the firing pattern of neurons in the substantia nigra pars reticulata (SNr), shifting their mostly tonic firing toward irregularity and bursting, traits of pathological firing underlying rigidity and postural instability in Parkinson's disease (PD) patients and animal models of Parkinsonism (PS). Drug-induced Parkinsonism (DIP) represents 20-40% of clinical cases of PS, becoming a problem for differential diagnosis, and is still not well studied with physiological tools. It may co-occur with tardive dyskinesia. Here we use in vitro slice preparations including the SNr to observe drug-induced pathological firing by using drugs that most likely produce it, DA-receptor antagonists (SCH23390 plus sulpiride), to compare with firing patterns found in DA-depleted tissue. The hypothesis is that SNr firing would be similar under both conditions, a prerequisite to the proposal of a similar preparation to test other DIP-producing drugs. Firing was analyzed with three complementary metrics, showing similarities between DA depletion and acute DA-receptor blockade. Moreover, blockade of either nonselective cationic channels or Cav3 T-type calcium channels hyperpolarized the membrane and abolished bursting and irregular firing, silencing SNr neurons in both conditions. Therefore, currents generating firing in control conditions are in part responsible for pathological firing. Haloperidol, a DIP-producing drug, reproduced DA-receptor antagonist firing modifications. Since acute DA-receptor blockade induces SNr neuron firing similar to that found in the 6-hydroxydopamine model of PS, output basal ganglia neurons may play a role in generating DIP. Therefore, this study opens the way to test other DIP-producing drugs. NEW & NOTEWORTHY Dopamine (DA) depletion enhances substantia nigra pars reticulata (SNr) neuron bursting and irregular firing, hallmarks of Parkinsonism. Several drugs, including antipsychotics, antidepressants, and calcium channel antagonists, among others, produce drug-induced Parkinsonism. Here we show the first comparison between SNr neuron firing after DA depletion vs. firing found after acute blockade of DA receptors. It was found that firing in both conditions is similar, implying that pathological SNr neuron firing is also a physiological correlate of drug-induced Parkinsonism.


Asunto(s)
Potenciales de Acción , Benzazepinas/toxicidad , Antagonistas de Dopamina/toxicidad , Enfermedad de Parkinson/etiología , Sustancia Negra/efectos de los fármacos , Sulpirida/toxicidad , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Ratones , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/fisiopatología
2.
J Neurophysiol ; 113(3): 796-807, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25392165

RESUMEN

The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.


Asunto(s)
Globo Pálido/fisiología , Potenciales Postsinápticos Inhibidores , Receptor Muscarínico M1/metabolismo , Sinapsis/metabolismo , Animales , Atropina/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Globo Pálido/citología , Péptidos y Proteínas de Señalización Intercelular , Muscarina/farmacología , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Péptidos/farmacología , Pirenzepina/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
3.
Learn Mem ; 18(12): 764-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22101179

RESUMEN

There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.


Asunto(s)
Cuerpo Estriado/citología , Depresión Sináptica a Largo Plazo/fisiología , Sustancia Negra/citología , Transmisión Sináptica/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Animales Recién Nacidos , Ganglios Basales , Benzazepinas/farmacología , Benzoxazinas/farmacología , Biofisica , Cannabinoides/agonistas , Quelantes/farmacología , Agonistas de Dopamina/farmacología , Interacciones Farmacológicas , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Morfolinas/farmacología , Naftalenos/farmacología , Vías Nerviosas/fisiología , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Sinapsis , Factores de Tiempo , Valina/análogos & derivados , Valina/farmacología
4.
Learn Mem ; 16(8): 474-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633136

RESUMEN

Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term potentiation (LTP) at synapses among spiny neurons (intrinsic striatal circuitry); a postsynaptically dependent long-term depression (LTD) at synapses between spiny and pallidal neurons (indirect pathway); and a presynaptically dependent LTP at strionigral synapses (direct pathway). Interestingly, long-term synaptic plasticity differs at these synapses. The functional consequences of these long-term plasticity variations during learning of procedural memories are discussed.


Asunto(s)
Ganglios Basales/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Ganglios Basales/citología , Técnicas In Vitro , Inhibición Neural/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/citología , Ratas , Ratas Wistar , Potenciales Sinápticos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...