Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 203: 186-92, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24698785

RESUMEN

The 17ß-hydroxysteroid dehydrogenases (17ß-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17ß-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17ß-HSD although significant similarities were also found with other invertebrate and vertebrate 17ß-HSD sequences. The T. solium Tsol-17ßHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17ß-HSD induced expression of Tsol17ß-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17ß-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Taenia solium/enzimología , Taenia solium/genética , Secuencia de Aminoácidos , Androstenodiona/biosíntesis , Animales , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Datos de Secuencia Molecular , Filogenia , Testosterona/biosíntesis
2.
Gen Comp Endocrinol ; 188: 212-7, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23608546

RESUMEN

Cysticerci and tapeworms from Taenia crassiceps WFU, ORF and Taenia solium synthesize sex-steroid hormones in vitro. Corticosteroids increase the 17ß-estradiol synthesis by T. crassiceps cysticerci. T. crassiceps WFU cysticerci synthesize corticosteroids, mainly 11-deoxycorticosterone (DOC). The aim of this work was to investigate whether classical steroidogenic inhibitors modify the capacity of T. crassiceps WFU cysticerci to synthesize corticosteroids and sex steroid hormones. For this purpose, T. crassiceps WFU cysticerci were obtained from the abdominal cavity of mice, pre-cultured for 24h in DMEM+antibiotics/antimycotics and cultured in the presence of tritiated progesterone ((3)H-P4), androstendione ((3)H-A4), or dehydroepiandrosterone ((3)H-DHEA) plus different doses of the corresponding inhibitors, for different periods. Blanks with the culture media adding the tritiated precursors were simultaneously incubated. At the end of the incubation period, parasites were separated and media extracted with ether. The resulting steroids were separated by thin layer chromatography (TLC). Data were expressed as percent transformation of the tritiated precursors. Results showed that after 2h of exposure of the cysticerci to 100 µM formestane, the (3)H-17ß-estradiol synthesis from tritiated androstenedione was significantly inhibited. The incubation of cysticerci in the presence of (3)H-DHEA and danazol (100 nM) resulted in (3)H-androstenediol accumulation and a significant reduction of the 17ß-estradiol synthesis. The cysticerci (3)H-DOC synthesis was significantly inhibited when the parasites were cultured in the presence of different ketoconazole dosis. The drug treatments did not affect parasite's viability. The results of this study showed that corticosteroid and sex steroid synthesis in T. crassiceps WFU cysticerci can be modified by steroidogenic enzyme inhibitors. As was shown previously by our laboratory and others, parasite survival and development depends on sex steroids, therefore the inhibition of their synthesis is a good starting point exploited in situations where the inhibition of steroidogenesis could help to control the infection for the development of new treatments, or replacement of the usual therapy in resistant parasite infections. We raise the possibility that these drug actions may be beneficially.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Esteroides/metabolismo , Taenia/efectos de los fármacos , Taenia/metabolismo , Androstenodiona/análogos & derivados , Androstenodiona/farmacología , Animales , Cromatografía en Capa Delgada , Danazol/farmacología , Desoxicorticosterona/farmacología , Estradiol/metabolismo , Cetoconazol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...