Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2640, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788315

RESUMEN

Fusarium oxysporum (Fo) is ubiquitous in soil and forms a species complex of pathogenic and putatively non-pathogenic strains. Pathogenic strains cause disease in over 150 plant species. Fusarium oxysporum f. sp. ciceris (Foc) is a major fungal pathogen causing Fusarium wilt in chickpeas (Cicer arietinum). In some countries such as Australia, Foc is a high-priority pest of biosecurity concern. Specific, sensitive, robust and rapid diagnostic assays are essential for effective disease management on the farm and serve as an effective biosecurity control measure. We developed and validated a novel and highly specific PCR and a LAMP assay for detecting the Indian Foc race 1 based on a putative effector gene uniquely present in its genome. These assays were assessed against 39 Fo formae speciales and found to be specific, only amplifying the target species, in a portable real-time fluorometer (Genie III) and qPCR machine in under 13 min with an anneal derivative temperature ranging from 87.7 to 88.3 °C. The LAMP assay is sensitive to low levels of target DNA (> 0.009 ng/µl). The expected PCR product size is 143 bp. The LAMP assay developed in this study was simple, fast, sensitive and specific and could be explored for other Foc races due to the uniqueness of this marker to the Foc genome.


Asunto(s)
Cicer , Fusarium , Fusarium/genética , Cicer/genética , Reacción en Cadena de la Polimerasa , Enfermedades de las Plantas/microbiología
2.
BMC Genomics ; 22(1): 734, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627148

RESUMEN

BACKGROUND: The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS: A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION: Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.


Asunto(s)
Fusarium , Fusarium/genética , Pisum sativum , Enfermedades de las Plantas/genética , Transcriptoma , Virulencia
3.
BMC Genomics ; 21(1): 248, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197583

RESUMEN

BACKGROUND: The Fusarium oxysporum species complex (FOSC) is a ubiquitous group of fungal species readily isolated from agroecosystem and natural ecosystem soils which includes important plant and human pathogens. Genetic relatedness within the complex has been studied by sequencing either the genes or the barcoding gene regions within those genes. Phylogenetic analyses have demonstrated a great deal of diversity which is reflected in the differing number of clades identified: three, five and eight. Genetic limitation within the species in the complex has been studied through Genealogical Concordance Phylogenetic Species Recognition (GCPSR) analyses with varying number of phylogenetic 'species' identified ranging from two to 21. Such differing views have continued to confuse users of these taxonomies. RESULTS: The phylogenetic relationships between Australian F. oxysporum isolates from both natural and agricultural ecosystems were determined using three datasets: whole genome, nuclear genes, and mitochondrial genome sequences. The phylogenies were concordant except for three isolates. There were three concordant clades from all the phylogenies suggesting similar evolutionary history for mitochondrial genome and nuclear genes for the isolates in these three clades. Applying a multispecies coalescent (MSC) model on the eight single copy nuclear protein coding genes from the nuclear gene dataset concluded that the three concordant clades correspond to three phylogenetic species within the FOSC. There was 100% posterior probability support for the formation of three species within the FOSC. This is the first report of using the MSC model to estimate species within the F. oxysporum species complex. The findings from this study were compared with previously published phylogenetics and species delimitation studies. CONCLUSION: Phylogenetic analyses using three different gene datasets from Australian F. oxysporum isolates have all supported the formation of three major clades which delineated into three species. Species 2 (Clade 3) may be called F. oxysporum as it contains the neotype for F. oxysporum.


Asunto(s)
Fusarium/clasificación , Secuenciación Completa del Genoma/estadística & datos numéricos , Núcleo Celular/genética , Evolución Molecular , Fusarium/genética , Fusarium/aislamiento & purificación , Genoma Fúngico , Mitocondrias/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA