Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 932642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812961

RESUMEN

Climacteric fruits display an increase in respiration and ethylene production during the onset of ripening, while such changes are minimal in non-climacteric fruits. Ethylene is a primary regulator of ripening in climacteric fruits. The ripening behavior and role of ethylene in blueberry (Vaccinium sp.) ripening is controversial. This work aimed to clarify the fruit ripening behavior and the associated role of ethylene in blueberry. Southern highbush (Vaccinium corymbosum hybrids) and rabbiteye (Vaccinium ashei) blueberry displayed an increase in the rate of respiration and ethylene evolution, both reaching a maxima around the Pink and Ripe stages of fruit development, consistent with climacteric fruit ripening behavior. Increase in ethylene evolution was associated with increases in transcript abundance of its biosynthesis genes, AMINOCYCLOPROPANE CARBOXYLATE (ACC) SYNTHASE1 (ACS1) and ACC OXIDASE2 (ACO2), implicating them in developmental ethylene production during ripening. Blueberry fruit did not display autocatalytic system 2 ethylene during ripening as ACS transcript abundance and ACC concentration were not enhanced upon treatment with an ethylene-releasing compound (ethephon). However, ACO transcript abundance was enhanced in response to ethephon, suggesting that ACO was not rate-limiting. Transcript abundance of multiple genes associated with ethylene signal transduction was upregulated concomitant with developmental increase in ethylene evolution, and in response to exogenous ethylene. As these changes require ethylene signal transduction, fruit ripening in blueberry appears to involve functional ethylene signaling. Together, these data indicate that blueberry fruit display atypical climacteric ripening, characterized by a respiratory climacteric, developmentally regulated but non-autocatalytic increase in ethylene evolution, and functional ethylene signaling.

2.
J Econ Entomol ; 113(5): 2553-2557, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32696955

RESUMEN

Low tunnels covered with spun-bonded fabric (row covers) provide season extension for vegetable production and also afford a physical barrier against airborne insects and other non-soil pests. Brussels sprouts, Brassica oleracea L. group Gemmifera (Brassicaceae), is a popular vegetable in local markets in Virginia; however, unprotected field production is severely affected by insect pest infestation. This study's objective was to determine the level of protection low tunnels provide against insect infestation and leaf herbivory injury. The experiment was conducted at the Virginia Tech Eastern Shore Agricultural Research and Extension Center in Painter, Virginia. The experimental design was split-plot with polyethylene soil mulches (white or black) as whole plot factors and production systems (low tunnel or open field) as subplot factors. In this study, low tunnels reduced insect infestation and chewing herbivory leaf injury to Brussels sprouts. Compared to an unprotected open field, infestations of lepidopteran insects and harlequin bug, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae) were reduced on plants under low tunnels. However, aphids (Hemiptera: Aphidae) infestation occurred under low tunnels in fall. There was no effect of color mulches (white or black) and no interaction between tunnel and mulch color on insect infestation and chewing injury. Fewer insect infestations and feeding injury indicate that low tunnels can be an effective management tool for sustainable vegetable production.


Asunto(s)
Brassica , Heterópteros , Insecticidas , Animales , Insectos , Virginia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...